Cargando…

Classical mathematical logic : the semantic foundations of logic /

In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Epstein, Richard L., 1947- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, ©2006.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 JSTOR_ocn770876081
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 111226s2006 njua ob 001 0 eng d
010 |a  2005055239 
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d EBLCP  |d IUL  |d E7B  |d MHW  |d N$T  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d JSTOR  |d OCLCF  |d JSTOR  |d OCLCQ  |d CUS  |d OCLCO  |d JBG  |d ZCU  |d MERUC  |d IOG  |d EZ9  |d STF  |d VTS  |d ICG  |d VT2  |d OCLCQ  |d WYU  |d LVT  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d MM9  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1055356146  |a 1065668549  |a 1181910605  |a 1228527403  |a 1266291659 
020 |a 9781400841554  |q (electronic bk.) 
020 |a 1400841550  |q (electronic bk.) 
020 |z 9780691123004  |q (acid-free paper) 
020 |z 0691123004  |q (acid-free paper) 
029 1 |a AU@  |b 000051355686 
029 1 |a AU@  |b 000051620893 
029 1 |a AU@  |b 000060532970 
029 1 |a CHBIS  |b 011058586 
029 1 |a CHNEW  |b 000615936 
029 1 |a CHVBK  |b 498855910 
029 1 |a DEBBG  |b BV043099994 
029 1 |a DEBBG  |b BV044159469 
029 1 |a DEBSZ  |b 372886736 
029 1 |a DEBSZ  |b 37932508X 
029 1 |a DEBSZ  |b 42147596X 
029 1 |a DEBSZ  |b 445578319 
029 1 |a GBVCP  |b 1003688284 
029 1 |a GBVCP  |b 80384834X 
029 1 |a NZ1  |b 14973100 
029 1 |a AU@  |b 000068437522 
035 |a (OCoLC)770876081  |z (OCoLC)1055356146  |z (OCoLC)1065668549  |z (OCoLC)1181910605  |z (OCoLC)1228527403  |z (OCoLC)1266291659 
037 |a 22573/cttzmbj  |b JSTOR 
050 4 |a QA9  |b .E67 2006eb 
072 7 |a MAT  |x 016000  |2 bisacsh 
072 7 |a MAT  |x 018000  |2 bisacsh 
072 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 22 
084 |a 31.10  |2 bcl 
084 |a CC 2500  |2 rvk 
049 |a UAMI 
100 1 |a Epstein, Richard L.,  |d 1947-  |e author. 
245 1 0 |a Classical mathematical logic :  |b the semantic foundations of logic /  |c Richard L. Epstein ; with contributions by Lesław W. Szczerba. 
260 |a Princeton :  |b Princeton University Press,  |c ©2006. 
300 |a 1 online resource (xxii, 522 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and indexes. 
505 0 |a Classical propositional logic -- Abstracting and axiomatizing classical propositional logic -- The language of predicate logic -- The semantics of classical predicate logic -- Substitutions and equivalences -- Equality -- Examples of formalization -- Functions -- The abstraction of models -- Axiomatizing classical predicate logic -- The number of objects in the universe of a model -- Formalizing group theory -- Linear orderings -- Second-order classical predicate logic -- The natural numbers -- The integers and rationals -- The real numbers -- One-dimensional geometry -- Two-dimensional Euclidean geometry -- Translations within classical predicate logic -- Classical predicate logic with non-referring names -- The Liar paradox -- On mathematical logic and mathematics -- Appendix: The completeness of classical predicate logic proved by Gödel's Method. 
520 |a In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proo. 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Logic, Symbolic and mathematical. 
650 0 |a Semantics (Philosophy) 
650 6 |a Logique symbolique et mathématique. 
650 6 |a Sémantique (Philosophie) 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Logic.  |2 bisacsh 
650 7 |a Logic, Symbolic and mathematical.  |2 fast  |0 (OCoLC)fst01002068 
650 7 |a Semantics (Philosophy)  |2 fast  |0 (OCoLC)fst01112094 
650 7 |a Mathematische Logik  |2 gnd 
650 7 |a Philosophische Semantik  |2 gnd 
650 1 7 |a Wiskundige logica.  |2 gtt 
650 1 7 |a Semantiek.  |2 gtt 
655 0 |a Electronic books. 
776 0 8 |i Print version:  |a Epstein, Richard L., 1947-  |t Classical mathematical logic.  |d Princeton : Princeton University Press, ©2006  |z 9780691123004  |w (DLC) 2005055239  |w (OCoLC)62290616 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7rg5q  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7174827 
938 |a Askews and Holts Library Services  |b ASKH  |n AH21635763 
938 |a ebrary  |b EBRY  |n ebr10519759 
938 |a EBSCOhost  |b EBSC  |n 413296 
938 |a YBP Library Services  |b YANK  |n 7298458 
994 |a 92  |b IZTAP