Cargando…

The ambient metric /

This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincaré metric, a metric in n+1 dimensions having the co...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fefferman, Charles, 1949-
Otros Autores: Graham, C. Robin, 1954-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, ©2012.
Colección:Annals of mathematics studies ; no. 178.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 JSTOR_ocn758372784
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 111024s2012 nju ob 001 0 eng d
010 |a  2011023939 
040 |a N$T  |b eng  |e pn  |c N$T  |d EBLCP  |d YDXCP  |d E7B  |d CDX  |d REDDC  |d OCLCQ  |d UMI  |d COO  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d EDX  |d JSTOR  |d OCLCF  |d OCLCQ  |d S4S  |d OCLCQ  |d MYSZA  |d OCLCQ  |d AZK  |d COCUF  |d UIU  |d AGLDB  |d MOR  |d LIP  |d PIFAG  |d OTZ  |d OCLCQ  |d IOG  |d NJR  |d U3W  |d EZ9  |d OCLCQ  |d STF  |d WRM  |d OCLCQ  |d VTS  |d CEF  |d NRAMU  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d LVT  |d TKN  |d OCLCQ  |d UKAHL  |d OCLCQ  |d MM9  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCO  |d OCLCQ 
015 |a GBB1B5953  |2 bnb 
016 7 |a 015903664  |2 Uk 
019 |a 794554432  |a 808088983  |a 961523053  |a 962703555  |a 1055353096  |a 1058116084  |a 1066023557  |a 1103269070  |a 1129360722  |a 1153006423 
020 |a 9781400840588  |q (electronic bk.) 
020 |a 1400840589  |q (electronic bk.) 
020 |a 9781283290951 
020 |a 1283290952 
020 |z 9780691153131 
020 |z 0691153132 
020 |z 9780691153148 
020 |z 0691153140 
029 1 |a AU@  |b 000051574204 
029 1 |a AU@  |b 000051621617 
029 1 |a CHBIS  |b 010896039 
029 1 |a CHVBK  |b 483395811 
029 1 |a DEBBG  |b BV040901396 
029 1 |a DEBBG  |b BV043149750 
029 1 |a DEBSZ  |b 372735479 
029 1 |a DEBSZ  |b 378286927 
029 1 |a DEBSZ  |b 381374351 
029 1 |a DEBSZ  |b 421521473 
029 1 |a GBVCP  |b 1003680976 
029 1 |a NZ1  |b 14972852 
029 1 |a AU@  |b 000070011166 
035 |a (OCoLC)758372784  |z (OCoLC)794554432  |z (OCoLC)808088983  |z (OCoLC)961523053  |z (OCoLC)962703555  |z (OCoLC)1055353096  |z (OCoLC)1058116084  |z (OCoLC)1066023557  |z (OCoLC)1103269070  |z (OCoLC)1129360722  |z (OCoLC)1153006423 
037 |a CL0500000140  |b Safari Books Online 
037 |a 22573/cttxmb6  |b JSTOR 
050 4 |a QA609  |b .F44 2012eb 
072 7 |a MAT  |x 012020  |2 bisacsh 
072 7 |a MAT012020  |2 bisacsh 
082 0 4 |a 516.3/7  |2 23 
084 |a MAT012020  |2 bisacsh 
049 |a UAMI 
100 1 |a Fefferman, Charles,  |d 1949- 
245 1 4 |a The ambient metric /  |c Charles Fefferman, C. Robin Graham. 
260 |a Princeton :  |b Princeton University Press,  |c ©2012. 
300 |a 1 online resource (111 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Annals of mathematics studies ;  |v no. 178 
520 |a This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincaré metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics. The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincaré metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincaré metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established. A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory. 
504 |a Includes bibliographical references (pages 107-111) and index. 
588 0 |a Print version record. 
505 0 |a 1. Introduction -- 2. Ambient Metrics -- 3. Formal Theory -- 4. Poincare? Metrics -- 5. Self-dual Poincare? Metrics -- 6. Conformal Curvature Tensors -- 7. Conformally Flat and Conformally Einstein Spaces -- 8. Jet Isomorphism -- 9. Scalar Invariants. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Conformal geometry. 
650 0 |a Conformal invariants. 
650 6 |a Géométrie conforme. 
650 6 |a Invariants conformes. 
650 7 |a MATHEMATICS  |x Geometry  |x Analytic.  |2 bisacsh 
650 7 |a Conformal geometry.  |2 fast  |0 (OCoLC)fst00875029 
650 7 |a Conformal invariants.  |2 fast  |0 (OCoLC)fst00875030 
700 1 |a Graham, C. Robin,  |d 1954- 
776 0 8 |i Print version:  |a Fefferman, Charles, 1949-  |t Ambient metric.  |d Princeton : Princeton University Press, 2011  |z 9780691153131  |w (DLC) 2011023939  |w (OCoLC)724663249 
830 0 |a Annals of mathematics studies ;  |v no. 178. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7rjjg  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26388028 
938 |a Coutts Information Services  |b COUT  |n 19558492 
938 |a EBL - Ebook Library  |b EBLB  |n EBL784515 
938 |a ebrary  |b EBRY  |n ebr10503246 
938 |a EBSCOhost  |b EBSC  |n 396360 
938 |a YBP Library Services  |b YANK  |n 7205524 
994 |a 92  |b IZTAP