Cargando…

How round is your circle? : where engineering and mathematics meet /

How do you draw a straight line? How do you determine if a circle is really round? These may sound like simple or even trivial mathematical problems, but to an engineer the answers can mean the difference between success and failure. How Round Is Your Circle? invites readers to explore many of the s...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bryant, John, 1934-
Otros Autores: Sangwin, C. J. (Christopher J.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. ; Woodstock : Princeton University Press, 2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 JSTOR_ocn751983194
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 110912r20112008njuaf ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCQ  |d UMI  |d COO  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d JSTOR  |d OCLCF  |d NLGGC  |d EBLCP  |d REB  |d YDXCP  |d OCLCQ  |d AGLDB  |d MERUC  |d OCLCQ  |d JBG  |d IOG  |d NJR  |d EZ9  |d OCLCQ  |d STF  |d VTS  |d CEF  |d OCLCQ  |d WYU  |d LVT  |d UAB  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO 
019 |a 745865982  |a 805417366  |a 843029073  |a 1066044871 
020 |a 9781400837953  |q (electronic bk.) 
020 |a 1400837952  |q (electronic bk.) 
020 |a 9781283212557 
020 |a 1283212552 
020 |z 9780691149929 
020 |z 0691149925 
024 3 |a 9781400837953 
029 1 |a AU@  |b 000048838652 
029 1 |a AU@  |b 000050013336 
029 1 |a AU@  |b 000051621221 
029 1 |a AU@  |b 000054183448 
029 1 |a AU@  |b 000067097011 
029 1 |a CHBIS  |b 009946802 
029 1 |a CHVBK  |b 302269320 
029 1 |a DEBBG  |b BV040901372 
029 1 |a DEBBG  |b BV043108247 
029 1 |a DEBSZ  |b 37273474X 
029 1 |a DEBSZ  |b 378286684 
029 1 |a DEBSZ  |b 379322862 
029 1 |a DEBSZ  |b 381374106 
029 1 |a DEBSZ  |b 421553677 
029 1 |a GBVCP  |b 1003678106 
029 1 |a GBVCP  |b 785363203 
029 1 |a AU@  |b 000073079940 
035 |a (OCoLC)751983194  |z (OCoLC)745865982  |z (OCoLC)805417366  |z (OCoLC)843029073  |z (OCoLC)1066044871 
037 |a CL0500000157  |b Safari Books Online 
037 |a 22573/cttffkc  |b JSTOR 
050 4 |a QA484  |b .B79 2011eb 
072 7 |a MAT  |x 020000  |2 bisacsh 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 516.15  |2 22 
049 |a UAMI 
100 1 |a Bryant, John,  |d 1934- 
245 1 0 |a How round is your circle? :  |b where engineering and mathematics meet /  |c John Bryant and Chris Sangwin. 
260 |a Princeton, N.J. ;  |a Woodstock :  |b Princeton University Press,  |c 2011. 
300 |a 1 online resource (xix, 306 pages, 16 unnumbered pages of plates) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 297-302) and index. 
588 0 |a Print version record. 
520 |a How do you draw a straight line? How do you determine if a circle is really round? These may sound like simple or even trivial mathematical problems, but to an engineer the answers can mean the difference between success and failure. How Round Is Your Circle? invites readers to explore many of the same fundamental questions that working engineers deal with every day--it's challenging, hands-on, and fun. John Bryant and Chris Sangwin illustrate how physical models are created from abstract mathematical ones. Using elementary geometry and trigonometry, they guide readers through paper-and-pencil. 
505 0 |a Cover; Title; Copyright; Contents; Preface; Acknowledgements; Chapter 1 Hard Lines; 1.1 Cutting Lines; 1.2 The Pythagorean Theorem; 1.3 Broad Lines; 1.4 Cutting Lines; 1.5 Trial by Trials; Chapter 2 How to Draw a Straight Line; 2.1 Approximate-Straight-Line Linkages; 2.2 Exact-Straight-Line Linkages; 2.3 Hart's Exact-Straight-Line Mechanism; 2.4 Guide Linkages; 2.5 Other Ways to Draw a Straight Line; Chapter 3 Four-Bar Variations; 3.1 Making Linkages; 3.2 The Pantograph; 3.3 The Crossed Parallelogram; 3.4 Four-Bar Linkages; 3.5 The Triple Generation Theorem; 3.6 How to Draw a Big Circle 
505 8 |a 3.7 Chebyshev's Paradoxical MechanismChapter 4 Building the World's First Ruler; 4.1 Standards of Length; 4.2 Dividing the Unit by Geometry; 4.3 Building the World's First Ruler; 4.4 Ruler Markings; 4.5 Reading Scales Accurately; 4.6 Similar Triangles and the Sector; Chapter 5 Dividing the Circle; 5.1 Units of Angular Measurement; 5.2 Constructing Base Angles via Polygons; 5.3 Constructing a Regular Pentagon; 5.4 Building the World's First Protractor; 5.5 Approximately Trisecting an Angle; 5.6 Trisecting an Angle by Other Means; 5.7 Trisection of an Arbitrary Angle; 5.8 Origami 
505 8 |a Chapter 6 Falling Apart6.1 Adding Up Sequences of Integers; 6.2 Duijvestijn's Dissection; Colour Plates; 6.3 Packing; 6.4 Plane Dissections; 6.5 Ripping Paper; 6.6 A Homely Dissection; 6.7 Something More Solid; Chapter 7 Follow My Leader; Chapter 8 In Pursuit of Coat-Hangers; 8.1 What Is Area?; 8.2 Practical Measurement of Areas; 8.3 Areas Swept Out by a Line; 8.4 The Linear Planimeter; 8.5 The Polar Planimeter of Amsler; 8.6 The Hatchet Planimeter of Prytz; 8.7 The Return of the Bent Coat-Hanger; 8.8 Other Mathematical Integrators; Chapter 9 All Approximations Are Rational 
505 8 |a 9.1 Laying Pipes under a Tiled Floor9.2 Cogs and Millwrights; 9.3 Cutting a Metric Screw; 9.4 The Binary Calendar; 9.5 The Harmonograph; 9.6 A Little Nonsense!; Chapter 10 How Round Is Your Circle?; 10.1 Families of Shapes of Constant Width; 10.2 Other Shapes of Constant Width; 10.3 Three-Dimensional Shapes of Constant Width; 10.4 Applications; 10.5 Making Shapes of Constant Width; 10.6 Roundness; 10.7 The British Standard Summit Tests of BS3730; 10.8 Three-Point Tests; 10.9 Shapes via an Envelope of Lines; 10.10 Rotors of Triangles with Rational Angles; 10.11 Examples of Rotors of Triangles 
505 8 |a 10.12 Modern and Accurate Roundness MethodsChapter 11 Plenty of Slide Rule; 11.1 The Logarithmic Slide Rule; 11.2 The Invention of Slide Rules; 11.3 Other Calculations and Scales; 11.4 Circular and Cylindrical Slide Rules; 11.5 Slide Rules for Special Purposes; 11.6 The Magnameta Oil Tonnage Calculator; 11.7 Non-Logarithmic Slide Rules; 11.8 Nomograms; 11.9 Oughtred and Delamain's Views on Education; Chapter 12 All a Matter of Balance; 12.1 Stacking Up; 12.2 The Divergence of the Harmonic Series; 12.3 Building the Stack of Dominos; 12.4 The Leaning Pencil and Reaching the Stars 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Engineering mathematics. 
650 0 |a Geometry, Plane. 
650 0 |a Geometry, Algebraic. 
650 0 |a Geometrical models. 
650 0 |a Circle. 
650 0 |a Geometry, Modern  |x Plane. 
650 6 |a Mathématiques de l'ingénieur. 
650 6 |a Géométrie plane. 
650 6 |a Géométrie algébrique. 
650 6 |a Modèles géométriques. 
650 6 |a Cercle. 
650 7 |a circumference.  |2 aat 
650 7 |a MATHEMATICS  |x Measurement.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Geometry, Modern  |x Plane  |2 fast 
650 7 |a Circle  |2 fast 
650 7 |a Engineering mathematics  |2 fast 
650 7 |a Geometrical models  |2 fast 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Geometry, Plane  |2 fast 
700 1 |a Sangwin, C. J.  |q (Christopher J.) 
776 0 8 |i Print version:  |a Bryant, John, 1934-  |t How round is your circle?  |d Princeton, N.J. ; Woodstock : Princeton University Press, 2011  |z 9780691149929  |w (OCoLC)712624552 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7rq7h  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL742072 
938 |a ebrary  |b EBRY  |n ebr10491752 
938 |a EBSCOhost  |b EBSC  |n 386955 
938 |a YBP Library Services  |b YANK  |n 7024138 
994 |a 92  |b IZTAP