MARC

LEADER 00000cam a2200000Ia 4500
001 JSTOR_ocn747411206
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 110803s2011 nju ob 001 0 eng d
010 |a  2011499118 
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d YDXCP  |d OSU  |d N$T  |d OCLCQ  |d EBLCP  |d UMI  |d REDDC  |d OCLCQ  |d S4S  |d COO  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d C6I  |d JSTOR  |d OCLCF  |d OCLCQ  |d LOA  |d COCUF  |d UIU  |d MOR  |d PIFAG  |d OTZ  |d ZCU  |d MERUC  |d OCLCQ  |d LGG  |d IOG  |d NJR  |d U3W  |d EZ9  |d OCLCQ  |d STF  |d WRM  |d NRAMU  |d ICG  |d TXC  |d INT  |d VT2  |d CEF  |d AU@  |d OCLCQ  |d WYU  |d LVT  |d TKN  |d OCLCQ  |d UAB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d VLY  |d UX1  |d UWK  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
066 |c (S 
016 7 |a 015896493  |2 Uk 
016 7 |a 015952728  |2 Uk 
019 |a 773205579  |a 775749687  |a 803519871  |a 961498437  |a 962719561  |a 972135402  |a 972262982  |a 1055382243  |a 1063811814  |a 1103272820  |a 1129342756  |a 1153051374  |a 1162351937  |a 1175627245  |a 1192344327  |a 1202536264 
020 |a 9781400840571  |q (electronic bk.) 
020 |a 1400840570  |q (electronic bk.) 
020 |z 9780691151298  |q (alk. paper) 
020 |z 0691151296  |q (alk. paper) 
020 |z 9780691151304  |q (pbk. ;  |q alk. paper) 
020 |z 069115130X  |q (pbk. ;  |q alk. paper) 
020 |a 9781283163873 
020 |a 128316387X 
020 |a 9786613163875 
020 |a 6613163872 
020 |a 0691151296 
020 |a 9780691151298 
024 3 |a 9780691151298 
029 1 |a AU@  |b 000051621405 
029 1 |a CHBIS  |b 010896038 
029 1 |a CHVBK  |b 483395609 
029 1 |a DEBBG  |b BV040901395 
029 1 |a DEBBG  |b BV044156061 
029 1 |a DEBSZ  |b 372879268 
029 1 |a DEBSZ  |b 378286919 
029 1 |a DEBSZ  |b 37932122X 
029 1 |a DEBSZ  |b 381374343 
029 1 |a DEBSZ  |b 445577894 
029 1 |a NZ1  |b 16078157 
029 1 |a GBVCP  |b 1003677002 
029 1 |a DKDLA  |b 820120-katalog:999930171405765 
035 |a (OCoLC)747411206  |z (OCoLC)773205579  |z (OCoLC)775749687  |z (OCoLC)803519871  |z (OCoLC)961498437  |z (OCoLC)962719561  |z (OCoLC)972135402  |z (OCoLC)972262982  |z (OCoLC)1055382243  |z (OCoLC)1063811814  |z (OCoLC)1103272820  |z (OCoLC)1129342756  |z (OCoLC)1153051374  |z (OCoLC)1162351937  |z (OCoLC)1175627245  |z (OCoLC)1192344327  |z (OCoLC)1202536264 
037 |a CL0500000122  |b Safari Books Online 
037 |a 22573/cttwt4n  |b JSTOR 
050 4 |a QA377  |b .B57 2011eb 
072 7 |a MAT  |x 007020  |2 bisacsh 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT019000  |2 bisacsh 
072 7 |a MAT012020  |2 bisacsh 
080 |a 517.93 
082 0 4 |a 515/.353  |2 23 
049 |a UAMI 
100 1 |a Bismut, Jean-Michel. 
245 1 0 |a Hypoelliptic Laplacian and orbital integrals /  |c Jean-Michel Bismut. 
260 |a Princeton, N.J. :  |b Princeton University Press,  |c ©2011. 
300 |a 1 online resource (x, 330 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Annals of mathematics studies ;  |v no. 177 
504 |a Includes bibliographical references and indexes. 
520 8 |a Annotation  |b This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. 
588 0 |a Print version record. 
505 0 |6 880-01  |a Introduction -- 1. Clifford and Heisenberg algebras -- 2. The hypoelliptic Laplacian onX=G/K -- 3. 
546 |a English. 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Differential equations, Hypoelliptic. 
650 0 |a Laplacian operator. 
650 0 |a Definite integrals. 
650 0 |a Orbit method. 
650 6 |a Équations différentielles hypo-elliptiques. 
650 6 |a Laplacien. 
650 6 |a Intégrales définies. 
650 6 |a Méthode des orbites. 
650 7 |a MATHEMATICS  |x Differential Equations  |x Partial.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Integrales  |2 embne 
650 7 |a Definite integrals  |2 fast 
650 7 |a Differential equations, Hypoelliptic  |2 fast 
650 7 |a Laplacian operator  |2 fast 
650 7 |a Orbit method  |2 fast 
776 0 8 |i Print version:  |a Bismut, Jean-Michel.  |t Hypoelliptic Laplacian and orbital integrals.  |d Princeton, N.J. : Princeton University Press, ©2011  |z 9781400840571  |w (OCoLC)751685247 
830 0 |a Annals of mathematics studies ;  |v no. 177. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7rrxw  |z Texto completo 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 0.1.  |t trace formula as a Lefschetz formula --  |g 0.2.  |t short history of the hypoelliptic Laplacian --  |g 0.3.  |t hypoelliptic Laplacian on a symmetric space --  |g 0.4.  |t hypoelliptic Laplacian and its heat kernel --  |g 0.5.  |t Elliptic and hypoelliptic orbital integrals --  |g 0.6.  |t limit as b -> 0 --  |g 0.7.  |t limit as b -> + infinity: an explicit formula for the orbital integrals --  |g 0.8.  |t analysis of the hypoelliptic orbital integrals --  |g 0.9.  |t heat kernel for bounded b and the Malliavin calculus --  |g 0.10.  |t heat kernel for large b, Toponogov, and local index --  |g 0.11.  |t hypoelliptic Laplacian and the wave equation --  |g 0.12.  |t organization of the book --  |g 1.1.  |t Clifford algebra of a real vector space --  |g 1.2.  |t Clifford algebra of V direct sum V* --  |g 1.3.  |t Heisenberg algebra --  |g 1.4.  |t Heisenberg algebra of V direct sum V* --  |g 1.5.  |t Clifford-Heisenberg algebra of V direct sum V* --  |g 1.6.  |t Clifford-Heisenberg algebra of V direct sum V* when V is Euclidean --  |g 2.1.  |t pair (G, K) --  |g 2.2.  |t flat connection on TX direct sum N --  |g 2.3.  |t Clifford algebras of g --  |g 2.4.  |t flat connections on Λ (T* X Edirect sum N*) --  |g 2.5.  |t Casimir operator --  |g 2.6.  |t form Kg --  |g 2.7.  |t Dirac operator of Kostant --  |g 2.8.  |t Clifford-Heisenberg algebra of g direct sum g* --  |g 2.9.  |t operator Db --  |g 2.10.  |t compression of the operator Db --  |g 2.11.  |t formula for D2b --  |g 2.12.  |t action of Db on quotients by K --  |g 2.13.  |t operators LX and Lxb --  |g 2.14.  |t scaling of the form B --  |g 2.15.  |t Bianchi identity --  |g 2.16.  |t fundamental identity --  |g 2.17.  |t canonical vector fields on Lxb --  |g 2.18.  |t Lie derivatives and the operator a --  |g 3.1.  |t Convexity, the displacement function, and its critical set --  |g 3.2.  |t norm of the canonical vector fields --  |g 3.3.  |t subset X (γ) as a symmetric space --  |g 3.4.  |t normal coordinate system on X based at X (γ) --  |g 3.5.  |t return map along the minimizing geodesics in X (γ) --  |g 3.6.  |t return map on X --  |g 3.7.  |t connection form in the parallel transport trivialization --  |g 3.8.  |t Distances and pseudodistances on X and X --  |g 3.9.  |t pseudodistance and Toponogov's theorem --  |g 3.10.  |t flat bundle (TX direct sum N) (γ) --  |g 4.1.  |t algebra of invariant kernels on X --  |g 4.2.  |t Orbital integrals --  |g 4.3.  |t Infinite dimensional orbital integrals --  |g 4.4.  |t orbital integrals for the elliptic heat kernel of X --  |g 4.5.  |t orbital supertraces for the hypoelliptic heat kernel --  |g 4.6.  |t fundamental equality --  |g 4.7.  |t Another approach to the orbital integrals --  |g 4.8.  |t locally symmetric space Z --  |g 5.1.  |t operator Pa, y0 n and the function Jγ (Y0) --  |g 5.2.  |t conjugate operator --  |g 5.3.  |t evaluation of certain infinite dimensional traces --  |g 5.4.  |t Some formulas of linear algebra --  |g 5.5.  |t formula for Jγ(Y0) --  |g 6.1.  |t Orbital integrals for the heat kernel --  |g 6.2.  |t formula for general orbital integrals --  |g 6.3.  |t orbital integrals for the wave operator --  |g 7.1.  |t Characteristic forms on X --  |g 7.2.  |t vector bundle of spinors on X and the Dirac operator --  |g 7.3.  |t McKean-Singer formula on Z --  |g 7.4.  |t Orbital integrals and the index theorem --  |g 7.5.  |t proof of (7.4.4) --  |g 7.6.  |t case of complex symmetric spaces --  |g 7.7.  |t case of an elliptic element --  |g 7.8.  |t de Rham-Hodge operator --  |g 7.9.  |t integrand of de Rham torsion --  |g 8.1.  |t case where G = K --  |g 8.2.  |t case a not = to 0 [(γ), po] = 0 --  |g 8.3.  |t case where G = SL2 (R) --  |g 9.1.  |t Estimates on the heat kernel qxb, t away from iaN(k-1 --  |g 9.2.  |t rescaling on the coordinates (f, Y) --  |g 9.3.  |t conjugation of the Clifford variables --  |g 9.4.  |t norm of α --  |g 9.5.  |t conjugation of the hypoelliptic Laplacian --  |g 9.6.  |t limit of the rescaled heat kernel --  |g 9.7.  |t proof of Theorem 6.1.1 --  |g 9.8.  |t translation on the variable YTX --  |g 9.9.  |t coordinate system and a trivialization of the vector bundles --  |g 9.10.  |t asymptotics of the operator pXA, a, B, YT0 AS B -> + infinity --  |g 9.11.  |t proof of Theorem 9.6.1 --  |g 10.1.  |t variational problem --  |g 10.2.  |t Pontryagin maximum principle --  |g 10.3.  |t variational problem on an Euclidean vector space --  |g 10.4.  |t Mehler's formula --  |g 10.5.  |t hypoelliptic heat kernel on an Euclidean vector space --  |g 10.6.  |t Orbital integrals on an Euclidean vector space --  |g 10.7.  |t Some computations involving Mehler's formula --  |g 10.8.  |t probabilistic interpretation of the harmonic oscillator --  |g 11.1.  |t scalar operators Axb, Bxb on X --  |g 11.2.  |t Littlewood-Paley decomposition along the fibres TX --  |g 11.3.  |t Littlewood-Paley decomposition on X --  |g 11.4.  |t Littlewood Paley decomposition on X --  |g 11.5.  |t heat kernels for Axb, Bxb --  |g 11.6.  |t scalar hypoelliptic operators on X --  |g 11.7.  |t scalar hypoelliptic operator on X with a quartic term --  |g 11.8.  |t heat kernel associated with the operator LxA, b --  |g 12.1.  |t Malliavin calculus for the Brownian motion on X --  |g 12.2.  |t probabilistic construction of exp ( -tBxb)) over X --  |g 12.3.  |t operator 136 and the wave equation --  |g 12.4.  |t Malliavin calculus for the operator Bic, --  |g 12.5.  |t tangent variational problem and integration by parts --  |g 12.6.  |t uniform control of the integration by parts formula as b-> 0 --  |g 12.7.  |t Uniform rough estimates on rxb, t, for bounded b --  |g 12.8.  |t limit as b -> 0 --  |g 12.9.  |t rough estimates as b -> + infinity --  |g 12.10.  |t heat kernel rxb, t on X --  |g 12.11.  |t heat kernel rxb, t on X --  |g 13.1.  |t Hessian of the distance function --  |g 13.2.  |t Bounds on the scalar heat kernel on X for bounded b --  |g 13.3.  |t Bounds on the scalar heat kernel on X for bounded b --  |g 14.1.  |t probabilistic construction of exp ( -tLxA)) --  |g 14.2.  |t operator Lxb and the wave equation --  |g 14.3.  |t Changing Y into -Y --  |g 14.4.  |t probabilistic construction of exp ( -tLx'A, b) --  |g 14.5.  |t Estimating V --  |g 14.6.  |t Estimating W --  |g 14.7.  |t proof of (4.5.3) when E is trivial --  |g 14.8.  |t proof of the estimate (4.5.3) in the general case --  |g 14.9.  |t Rough estimates on the derivatives of qx'b, t for bounded b --  |g 14.10.  |t behavior of V as b -> 0 --  |g 14.11.  |t limit of qx'b, t as b -> 0 --  |g 15.1.  |t Uniform estimates on the kernel rxb, t over X --  |g 15.2.  |t deviation from the geodesic flow for large b --  |g 15.3.  |t scalar heat kernel on X away from Fγ = iaX(γ) --  |g 15.4.  |t Gaussian estimates for rxb near iaX(γ) --  |g 15.5.  |t scalar heat kernel on X away from Fγ=iaN(k-1) --  |g 15.6.  |t Estimates on the scalar heat kernel on X near iaN(k-1) --  |g 15.7.  |t proof of Theorem 9.1.1 --  |g 15.8.  |t proof of Theorem 9.1.3 --  |g 15.9.  |t proof of Theorem 9.5.6 --  |g 15.10.  |t proof of Theorem 9.11.1. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26388027 
938 |a EBL - Ebook Library  |b EBLB  |n EBL729954 
938 |a ebrary  |b EBRY  |n ebr10481984 
938 |a EBSCOhost  |b EBSC  |n 376597 
938 |a YBP Library Services  |b YANK  |n 6978589 
994 |a 92  |b IZTAP