Cargando…

Computational aspects of modular forms and Galois representations : how one can compute in polynomial time the value of Ramanujan's tau at a prime /

"Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fas...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Couveignes, Jean-Marc, Edixhoven, B. (Bas), 1962-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, ©2011.
Colección:Annals of mathematics studies ; no. 176.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 JSTOR_ocn729386470
003 OCoLC
005 20231005004200.0
006 m o d
007 cr mnu---unuuu
008 110607s2011 njua ob 001 0 eng d
010 |z  2010053185 
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d YDXCP  |d OSU  |d CDX  |d OSU  |d OCLCQ  |d EBLCP  |d UMI  |d REDDC  |d OCLCQ  |d COO  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d JSTOR  |d OCLCF  |d OCLCQ  |d UIU  |d AGLDB  |d MERUC  |d K6U  |d ICG  |d LOA  |d PIFAG  |d FVL  |d ZCU  |d OTZ  |d OCLCQ  |d IOG  |d U3W  |d EZ9  |d STF  |d WRM  |d VTS  |d DEHBZ  |d INT  |d VT2  |d CEF  |d OCLCQ  |d WYU  |d LVT  |d OCLCQ  |d UAB  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d UKCRE  |d MM9  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ 
019 |a 715191255  |a 773205247  |a 980553294  |a 980739729  |a 982068263  |a 992010540  |a 995020090  |a 1037938018  |a 1038658979  |a 1148070804  |a 1153548147  |a 1192334234  |a 1202558914  |a 1228611194 
020 |a 9781400839001  |q (electronic bk.) 
020 |a 1400839009  |q (electronic bk.) 
020 |z 9780691142012  |q (hardback) 
020 |z 0691142017  |q (hardback) 
020 |z 9780691142029  |q (pbk.) 
020 |z 0691142025  |q (pbk.) 
024 7 |a 10.1515/9781400839001  |2 doi 
029 1 |a AU@  |b 000051621398 
029 1 |a CHBIS  |b 010896034 
029 1 |a CHVBK  |b 483393282 
029 1 |a DEBBG  |b BV040901384 
029 1 |a DEBBG  |b BV043152961 
029 1 |a DEBSZ  |b 372814816 
029 1 |a DEBSZ  |b 378286803 
029 1 |a DEBSZ  |b 379319012 
029 1 |a DEBSZ  |b 38137422X 
029 1 |a DEBSZ  |b 421620773 
029 1 |a DEBSZ  |b 445570067 
029 1 |a GBVCP  |b 1003670997 
029 1 |a GBVCP  |b 785358706 
029 1 |a AU@  |b 000068438316 
029 1 |a DKDLA  |b 820120-katalog:999937452605765 
035 |a (OCoLC)729386470  |z (OCoLC)715191255  |z (OCoLC)773205247  |z (OCoLC)980553294  |z (OCoLC)980739729  |z (OCoLC)982068263  |z (OCoLC)992010540  |z (OCoLC)995020090  |z (OCoLC)1037938018  |z (OCoLC)1038658979  |z (OCoLC)1148070804  |z (OCoLC)1153548147  |z (OCoLC)1192334234  |z (OCoLC)1202558914  |z (OCoLC)1228611194 
037 |a CL0500000122  |b Safari Books Online 
037 |a 22573/cttt3bg  |b JSTOR 
050 4 |a QA247  |b .C638 2011eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 512/.32  |2 22 
084 |a MAT001000  |a MAT012010  |2 bisacsh 
049 |a UAMI 
245 0 0 |a Computational aspects of modular forms and Galois representations :  |b how one can compute in polynomial time the value of Ramanujan's tau at a prime /  |c edited by Jean-Marc Couveignes and Bas Edixhoven. 
260 |a Princeton :  |b Princeton University Press,  |c ©2011. 
300 |a 1 online resource (xi, 425 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Annals of mathematics studies ;  |v no. 176 
520 |a "Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number P can be computed in time bounded by a fixed power of the logarithm of P. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations"--  |c Provided by publisher. 
520 |a "This book represents a major step forward from explicit class field theory, and it could be described as the start of the 'explicit Langlands program'"--  |c Provided by publisher. 
504 |a Includes bibliographical references (pages 403-421) and index. 
505 0 |a Introduction, main results, context / Bas Edixhoven -- Modular curves, modular forms, lattices, Galois representations / Bas Edixhoven -- First description of the algorithms / Jean-Marc Couveignes and Bas Edixhoven -- Short introduction to heights and Arakelov theory / Bas Edixhoven and Robin de Jong -- Computing complex zeros of polynomials and power series / Jean-Marc Couveignes -- Computations with modular forms and Galois representations / Johan Bosman -- Polynomials for projective representations of level one forms / Johan Bosman -- Description of X₁(5l) / Bas Edixhoven -- Applying Arakelov theory / Bas Edixhoven and Robin de Jong -- An upper bound for Green functions on Riemann surfaces / Franz Merkl -- Bounds for Arakelov invariants of modular curves / Bas Edixhoven and Robin de Jong -- Approximating V[subscript f] over the complex numbers / Jean-Marc Couveignes -- Computing V[subscript f] modulo p / Jean-Marc Couveignes -- Computing the residual Galois representations / Bas Edixhoven -- Computing coefficients of modular forms / Bas Edixhoven. 
588 0 |a Print version record. 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Galois modules (Algebra) 
650 0 |a Class field theory. 
650 6 |a Modules galoisiens. 
650 6 |a Théorie du corps de classes. 
650 7 |a MATHEMATICS  |x Advanced.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 7 |a Class field theory.  |2 fast  |0 (OCoLC)fst00863428 
650 7 |a Galois modules (Algebra)  |2 fast  |0 (OCoLC)fst00937325 
700 1 |a Couveignes, Jean-Marc. 
700 1 |a Edixhoven, B.  |q (Bas),  |d 1962- 
776 0 8 |i Print version:  |t Computational aspects of modular forms and Galois representations.  |d Princeton : Princeton University Press, ©2011  |z 9780691142012  |w (DLC) 2010053185  |w (OCoLC)687685173 
830 0 |a Annals of mathematics studies ;  |v no. 176. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7rzmb  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26387936 
938 |a Coutts Information Services  |b COUT  |n 17649368 
938 |a EBL - Ebook Library  |b EBLB  |n EBL670341 
938 |a ebrary  |b EBRY  |n ebr10456327 
938 |a EBSCOhost  |b EBSC  |n 360719 
938 |a YBP Library Services  |b YANK  |n 3669927 
994 |a 92  |b IZTAP