Cargando…

Mathematical modeling of Earth's dynamical systems : a primer /

Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Slingerland, Rudy (Autor), Kump, Lee R. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, ©2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 JSTOR_ocn719383459
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 110502s2011 njuab ob 001 0 eng d
010 |a  2010041656 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d E7B  |d CDX  |d EBLCP  |d MHW  |d OCLCQ  |d UMI  |d COD  |d REDDC  |d OCLCQ  |d COO  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d JSTOR  |d OCLCQ  |d CUI  |d OCLCQ  |d LOA  |d YDX  |d OCLCQ  |d OCLCO  |d AGLDB  |d TOA  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d IOG  |d U3W  |d EZ9  |d STF  |d WRM  |d VTS  |d CUS  |d ICG  |d VT2  |d INT  |d CEF  |d OCLCQ  |d WYU  |d LVT  |d TKN  |d OCLCQ  |d UAB  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d OCLCA  |d UKCRE  |d MM9  |d OCLCO  |d OCLCQ 
019 |a 710018926  |a 715161214  |a 773205577  |a 781406509  |a 960201464  |a 961011161  |a 961503258  |a 962675185  |a 965422691  |a 988536544  |a 992076753  |a 1037913221  |a 1038570125  |a 1048148449  |a 1050975319  |a 1055355166  |a 1061029809  |a 1064111990  |a 1103280382  |a 1129361598  |a 1148113107  |a 1181907548  |a 1192335201  |a 1202538548  |a 1228603766 
020 |a 9781400839117  |q (electronic bk.) 
020 |a 1400839114  |q (electronic bk.) 
020 |z 9780691145136 
020 |z 069114513X 
020 |z 9780691145143 
020 |z 0691145148 
024 8 |a 3574376 
029 1 |a AU@  |b 000048832369 
029 1 |a AU@  |b 000051621401 
029 1 |a AU@  |b 000054181483 
029 1 |a AU@  |b 000060896190 
029 1 |a AU@  |b 000065313328 
029 1 |a DEBBG  |b BV040901388 
029 1 |a DEBBG  |b BV043069382 
029 1 |a DEBBG  |b BV044151284 
029 1 |a DEBSZ  |b 372805159 
029 1 |a DEBSZ  |b 378286846 
029 1 |a DEBSZ  |b 381374262 
029 1 |a DEBSZ  |b 421614021 
029 1 |a DEBSZ  |b 430948999 
029 1 |a DEBSZ  |b 449225542 
029 1 |a GBVCP  |b 1003668097 
029 1 |a GBVCP  |b 785358714 
029 1 |a NZ1  |b 13688891 
029 1 |a AU@  |b 000073079531 
035 |a (OCoLC)719383459  |z (OCoLC)710018926  |z (OCoLC)715161214  |z (OCoLC)773205577  |z (OCoLC)781406509  |z (OCoLC)960201464  |z (OCoLC)961011161  |z (OCoLC)961503258  |z (OCoLC)962675185  |z (OCoLC)965422691  |z (OCoLC)988536544  |z (OCoLC)992076753  |z (OCoLC)1037913221  |z (OCoLC)1038570125  |z (OCoLC)1048148449  |z (OCoLC)1050975319  |z (OCoLC)1055355166  |z (OCoLC)1061029809  |z (OCoLC)1064111990  |z (OCoLC)1103280382  |z (OCoLC)1129361598  |z (OCoLC)1148113107  |z (OCoLC)1181907548  |z (OCoLC)1192335201  |z (OCoLC)1202538548  |z (OCoLC)1228603766 
037 |a CL0500000122  |b Safari Books Online 
037 |a 22573/ctt107qk  |b JSTOR 
050 4 |a QH331  |b .S55 2011eb 
072 7 |a SCI  |x 019000  |2 bisacsh 
072 7 |a SCI  |x 032000  |2 bisacsh 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a SCI019000  |2 bisacsh 
082 0 4 |a 550.1/5118  |2 22 
049 |a UAMI 
100 1 |a Slingerland, Rudy,  |e author. 
245 1 0 |a Mathematical modeling of Earth's dynamical systems :  |b a primer /  |c Rudy Slingerland and Lee Kump. 
260 |a Princeton, N.J. :  |b Princeton University Press,  |c ©2011. 
300 |a 1 online resource (xii, 231 pages) :  |b illustrations, maps 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a 1 Modeling and Mathematical Concepts -- Pros and Cons of Dynamical Models -- An Important Modeling Assumption -- Some Examples -- Example I: Simulation of Chicxulub Impact and Its Consequences -- Example II: Storm Surge of Hurricane Ivan in Escambia Bay -- Steps in Model Building -- Basic Definitions and Concepts -- Nondimensionalization -- A Brief Mathematical Review 2 Basics of Numerical Solutions by Finite Difference -- First Some Matrix Algebra -- Solution of Linear Systems of Algebraic Equations -- General Finite Difference Approach -- Discretization -- Obtaining Difference Operators by Taylor Series -- Explicit Schemes -- Implicit Schemes -- How Good Is My Finite Difference Scheme? -- Stability Is Not Accuracy 3 Box Modeling: Unsteady, Uniform Conservation of Mass -- Translations -- Example I: Radiocarbon Content of the Biosphere as a One-Box Model -- Example II: The Carbon Cycle as a Multibox Model -- Example III: One-Dimensional Energy Balance Climate Model -- Finite Difference Solutions of Box Models -- The Forward Euler Method -- Predictor-Corrector Methods -- Stiff Systems -- Example IV: Rothman Ocean -- Backward Euler Method -- Model Enhancements 4 One-Dimensional Diffusion Problems -- Translations -- Example I: Dissolved Species in a Homogeneous Aquifer -- Example II: Evolution of a Sandy Coastline -- Example III: Diffusion of Momentum -- Finite Difference Solutions to 1-D Diffusion Problems 5 Multidimensional Diffusion Problems -- Translations -- Example I: Landscape Evolution as a 2-D Diffusion Problem -- Example II: Pollutant Transport in a Confined Aquifer -- Example III: Thermal Considerations in Radioactive Waste Disposal -- Finite Difference Solutions to Parabolic PDEs and Elliptic Boundary Value Problems -- An Explicit Scheme -- Implicit Schemes -- Case of Variable Coefficients 6 Advection-Dominated Problems -- Translations -- Example I: A Dissolved Species in a River -- Example II: Lahars Flowing along Simple Channels -- Finite Difference Solution Schemes to the Linear Advection Equation 7 Advection and Diffusion (Transport) Problems -- Translations -- Example I: A Generic 1-DCase -- Example II: Transport of Suspended Sediment in a Stream -- Example III: Sedimentary Diagenesis -- Finite Difference Solutions to the Transport Equation -- QUICK Scheme -- QUICKEST Scheme 8 Transport Problems with a Twist: The Transport of Momentum -- Translations -- Example I: One-Dimensional Transport of Momentum in a Newtonian Fluid (Burgers' Equation) -- An Analytic Solution to Burgers' Equation -- Finite Difference Scheme for Burgers' Equation -- Solution Scheme Accuracy -- Diffusive Momentum Transport in turbulent Flows -- Adding Sources and Sinks of Momentum:The General Law of Motion 9 Systems of One-Dimensional Non linear Partial Differential Equations -- Translations -- Example I: Gradually Varied Flow in an Open Channel -- Finite Difference Solution Schemes for Equation Sets -- Explicit FTCS Scheme on a Staggered Mesh -- Four-Point Implicit Scheme -- The Dam-Break Problem: An Example 10. Two-Dimensional Nonlinear Hyperbolic Systems -- Translations -- Example I The Circulation of Lakes, Estuaries, and the Coastal Ocean -- An Explicit Solution Scheme for 2-D Vertically Integrated Geophysical Flows -- Lake Ontario Wind-Driven Circulation: An Example. 
520 |a Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of d. 
588 0 |a Print version record. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Gaia hypothesis  |x Mathematical models. 
650 6 |a Hypothèse Gaïa  |x Modèles mathématiques. 
650 7 |a SCIENCE  |x Earth Sciences  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Physics  |x Geophysics.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a Geowissenschaften  |2 gnd 
650 7 |a Mathematisches Modell  |2 gnd 
650 7 |a Geostatistik  |2 gnd 
700 1 |a Kump, Lee R.,  |e author. 
776 0 8 |i Print version:  |a Slingerland, Rudy.  |t Mathematical modeling of Earth's dynamical systems.  |d Princeton, N.J. : Princeton University Press, ©2011  |z 9780691145136  |w (DLC) 2010041656  |w (OCoLC)671916625 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7s5j9  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26387945 
938 |a Coutts Information Services  |b COUT  |n 17416884 
938 |a EBL - Ebook Library  |b EBLB  |n EBL664639 
938 |a ebrary  |b EBRY  |n ebr10449970 
938 |a EBSCOhost  |b EBSC  |n 363219 
938 |a YBP Library Services  |b YANK  |n 3636408 
994 |a 92  |b IZTAP