Cargando…

Spherical CR geometry and Dehn surgery /

This book proves an analogue of William Thurston's celebrated hyperbolic Dehn surgery theorem in the context of complex hyperbolic discrete groups, and then derives two main geometric consequences from it. The first is the construction of large numbers of closed real hyperbolic 3-manifolds whic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schwartz, Richard Evan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2007.
Colección:Annals of mathematics studies ; no. 165.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 JSTOR_ocn680126444
003 OCoLC
005 20231005004200.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 101108s2007 njua ob 001 0 eng d
010 |a  2006050589 
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d N$T  |d OCLCQ  |d OCLCF  |d OCLCQ  |d REB  |d OCLCO  |d IDEBK  |d DEBSZ  |d E7B  |d JSTOR  |d OCLCQ  |d UIU  |d AU@  |d AGLDB  |d COCUF  |d MOR  |d CCO  |d PIFAG  |d OCLCQ  |d IOG  |d U3W  |d EZ9  |d STF  |d VTS  |d NRAMU  |d INT  |d VT2  |d OCLCQ  |d WYU  |d LVT  |d OCLCQ  |d M8D  |d UKAHL  |d CEF  |d UX1  |d OCLCQ  |d K6U  |d VLB  |d HS0  |d OCLCQ  |d OCLCO  |d DKU  |d S2H  |d CNNOR  |d XND  |d OCLCQ  |d VJV  |d INARC  |d OCLCO 
015 |a GBA696316  |2 bnb 
016 7 |a 013601860  |2 Uk 
019 |a 827906657  |a 843035855  |a 882240036  |a 961579301  |a 962612367  |a 975027537  |a 975207735  |a 988482227  |a 991964420  |a 1018077532  |a 1037797703  |a 1042144647  |a 1042476007  |a 1045541556  |a 1048745587  |a 1053493880  |a 1055398407  |a 1063795615  |a 1066530159  |a 1097905260  |a 1100704574  |a 1101721718  |a 1109180958  |a 1181903283  |a 1184509786  |a 1190685123  |a 1227637475  |a 1228567540  |a 1228613237  |a 1249469687  |a 1258397168  |a 1262685189  |a 1289522540  |a 1290434954  |a 1297847843  |a 1297973908  |a 1298251132  |a 1375504827  |a 1392124467 
020 |a 9780691128108  |q (electronic bk.) 
020 |a 0691128103  |q (electronic bk.) 
020 |a 9781400837199 
020 |a 1400837197 
020 |z 9780691128092  |q (acid-free paper) 
020 |z 069112809X  |q (acid-free paper) 
020 |a 069112809X 
020 |a 9780691128092 
024 3 |a 9780691128092 
024 3 |a 9780691128108 
029 1 |a AU@  |b 000050266916 
029 1 |a AU@  |b 000053281009 
029 1 |a AU@  |b 000059325869 
029 1 |a CHBIS  |b 010896030 
029 1 |a CHVBK  |b 483398535 
029 1 |a DEBBG  |b BV043065738 
029 1 |a DEBSZ  |b 421414715 
029 1 |a GBVCP  |b 1003657060 
029 1 |a GBVCP  |b 80342390X 
029 1 |a NZ1  |b 16094933 
029 1 |a NZ1  |b 16278241 
035 |a (OCoLC)680126444  |z (OCoLC)827906657  |z (OCoLC)843035855  |z (OCoLC)882240036  |z (OCoLC)961579301  |z (OCoLC)962612367  |z (OCoLC)975027537  |z (OCoLC)975207735  |z (OCoLC)988482227  |z (OCoLC)991964420  |z (OCoLC)1018077532  |z (OCoLC)1037797703  |z (OCoLC)1042144647  |z (OCoLC)1042476007  |z (OCoLC)1045541556  |z (OCoLC)1048745587  |z (OCoLC)1053493880  |z (OCoLC)1055398407  |z (OCoLC)1063795615  |z (OCoLC)1066530159  |z (OCoLC)1097905260  |z (OCoLC)1100704574  |z (OCoLC)1101721718  |z (OCoLC)1109180958  |z (OCoLC)1181903283  |z (OCoLC)1184509786  |z (OCoLC)1190685123  |z (OCoLC)1227637475  |z (OCoLC)1228567540  |z (OCoLC)1228613237  |z (OCoLC)1249469687  |z (OCoLC)1258397168  |z (OCoLC)1262685189  |z (OCoLC)1289522540  |z (OCoLC)1290434954  |z (OCoLC)1297847843  |z (OCoLC)1297973908  |z (OCoLC)1298251132  |z (OCoLC)1375504827  |z (OCoLC)1392124467 
037 |a 22573/ctt6n4pxv  |b JSTOR 
042 |a dlr 
050 4 |a QA649  |b .S37 2007 
072 7 |a MAT  |x 012030  |2 bisacsh 
082 0 4 |a 516.3/6  |2 22 
049 |a UAMI 
100 1 |a Schwartz, Richard Evan. 
245 1 0 |a Spherical CR geometry and Dehn surgery /  |c Richard Evan Schwartz. 
260 |a Princeton :  |b Princeton University Press,  |c 2007. 
300 |a 1 online resource (xii, 186 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Annals of mathematics studies ;  |v no. 165 
504 |a Includes bibliographical references (pages 181-184) and index. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Cover; Title; Copyright; Dedication; Contents; Preface; PART 1. BASIC MATERIAL; Chapter 1. Introduction; 1.1 Dehn Filling and Thurston's Theorem; 1.2 Definition of a Horotube Group; 1.3 The Horotube Surgery Theorem; 1.4 Reflection Triangle Groups; 1.5 Spherical CR Structures; 1.6 The Goldman-Parker Conjecture; 1.7 Organizational Notes; Chapter 2. Rank-One Geometry; 2.1 Real Hyperbolic Geometry; 2.2 Complex Hyperbolic Geometry; 2.3 The Siegel Domain and Heisenberg Space; 2.4 The Heisenberg Contact Form; 2.5 Some Invariant Functions; 2.6 Some Geometric Objects. 
505 8 |a Chapter 3. Topological Generalities3.1 The Hausdorff Topology; 3.2 Singular Models and Spines; 3.3 A Transversality Result; 3.4 Discrete Groups; 3.5 Geometric Structures; 3.6 Orbifold Fundamental Groups; 3.7 Orbifolds with Boundary; Chapter 4. Reflection Triangle Groups; 4.1 The Real Hyperbolic Case; 4.2 The Action on the Unit Tangent Bundle; 4.3 Fuchsian Triangle Groups; 4.4 Complex Hyperbolic Triangles; 4.5 The Representation Space; 4.6 The Ideal Case; Chapter 5. Heuristic Discussion of Geometric Filling; 5.1 A Dictionary; 5.2 The Tree Example; 5.3 Hyperbolic Case: Before Filling. 
505 8 |a 5.4 Hyperbolic Case: After Filling5.5 Spherical CR Case: Before Filling; 5.6 Spherical CR Case: After Filling; 5.7 The Tree Example Revisited; PART 2. PROOF OF THE HST; Chapter 6. Extending Horotube Functions; 6.1 Statement of Results; 6.2 Proof of the Extension Lemma; 6.3 Proof of the Auxiliary Lemma; Chapter 7. Transplanting Horotube Functions; 7.1 Statement of Results; 7.2 A Toy Case; 7.3 Proof of the Transplant Lemma; Chapter 8. The Local Surgery Formula; 8.1 Statement of Results; 8.2 The Canonical Marking; 8.3 The Homeomorphism; 8.4 The Surgery Formula; Chapter 9. Horotube Assignments. 
505 8 |a 9.1 Basic Definitions9.2 The Main Result; 9.3 Corollaries; Chapter 10. Constructing the Boundary Complex; 10.1 Statement of Results; 10.2 Proof of the Structure Lemma; 10.3 Proof of the Horotube Assignment Lemma; Chapter 11. Extending to the Inside; 11.1 Statement of Results; 11.2 Proof of the Transversality Lemma; 11.3 Proof of the Local Structure Lemma; 11.4 Proof of the Compatibility Lemma; 11.5 Proof of the Finiteness Lemma; Chapter 12. Machinery for Proving Discreteness; 12.1 Chapter Overview; 12.2 Simple Complexes; 12.3 Chunks; 12.4 Geometric Equivalence Relations. 
505 8 |a 12.5 Alignment by a Simple ComplexChapter 13. Proof of the HST; 13.1 The Unperturbed Case; 13.2 The Perturbed Case; 13.3 Defining the Chunks; 13.4 The Discreteness Proof; 13.5 The Surgery Formula; 13.6 Horotube Group Structure; 13.7 Proof of Theorem 1.11; 13.8 Dealing with Elliptics; PART 3. THE APPLICATIONS; Chapter 14. The Convergence Lemmas; 14.1 Statement of Results; 14.2 Preliminary Lemmas; 14.3 Proof of the Convergence Lemma I; 14.4 Proof of the Convergence Lemma II; 14.5 Proof of the Convergence Lemma III; Chapter 15. Cusp Flexibility; 15.1 Statement of Results. 
520 |a This book proves an analogue of William Thurston's celebrated hyperbolic Dehn surgery theorem in the context of complex hyperbolic discrete groups, and then derives two main geometric consequences from it. The first is the construction of large numbers of closed real hyperbolic 3-manifolds which bound complex hyperbolic orbifolds--the only known examples of closed manifolds that simultaneously have these two kinds of geometric structures. The second is a complete understanding of the structure of complex hyperbolic reflection triangle groups in cases where the angle is small. In an accessib. 
546 |a English. 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a CR submanifolds. 
650 0 |a Dehn surgery (Topology) 
650 0 |a Three-manifolds (Topology) 
650 6 |a CR-sous-variétés. 
650 6 |a Chirurgie de Dehn (Topologie) 
650 6 |a Variétés topologiques à 3 dimensions. 
650 7 |a MATHEMATICS  |x Geometry  |x Differential.  |2 bisacsh 
650 7 |a CR submanifolds  |2 fast 
650 7 |a Dehn surgery (Topology)  |2 fast 
650 7 |a Three-manifolds (Topology)  |2 fast 
773 0 |t Academic Search Complete  |d EBSCO 
776 0 8 |i Print version:  |a Schwartz, Richard Evan.  |t Spherical CR geometry and Dehn surgery.  |d Princeton : Princeton University Press, 2007  |w (DLC) 2006050589  |w (OCoLC)71237491 
830 0 |a Annals of mathematics studies ;  |v no. 165. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt6wq0j8  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28073788 
938 |a ebrary  |b EBRY  |n ebr10874632 
938 |a EBSCOhost  |b EBSC  |n 454413 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis28409099 
938 |a Internet Archive  |b INAR  |n sphericalcrgeome0000schw 
994 |a 92  |b IZTAP