|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
JSTOR_ocn680126444 |
003 |
OCoLC |
005 |
20231005004200.0 |
006 |
m o d |
007 |
cr bn||||||abp |
007 |
cr bn||||||ada |
008 |
101108s2007 njua ob 001 0 eng d |
010 |
|
|
|a 2006050589
|
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d N$T
|d OCLCQ
|d OCLCF
|d OCLCQ
|d REB
|d OCLCO
|d IDEBK
|d DEBSZ
|d E7B
|d JSTOR
|d OCLCQ
|d UIU
|d AU@
|d AGLDB
|d COCUF
|d MOR
|d CCO
|d PIFAG
|d OCLCQ
|d IOG
|d U3W
|d EZ9
|d STF
|d VTS
|d NRAMU
|d INT
|d VT2
|d OCLCQ
|d WYU
|d LVT
|d OCLCQ
|d M8D
|d UKAHL
|d CEF
|d UX1
|d OCLCQ
|d K6U
|d VLB
|d HS0
|d OCLCQ
|d OCLCO
|d DKU
|d S2H
|d CNNOR
|d XND
|d OCLCQ
|d VJV
|d INARC
|d OCLCO
|
015 |
|
|
|a GBA696316
|2 bnb
|
016 |
7 |
|
|a 013601860
|2 Uk
|
019 |
|
|
|a 827906657
|a 843035855
|a 882240036
|a 961579301
|a 962612367
|a 975027537
|a 975207735
|a 988482227
|a 991964420
|a 1018077532
|a 1037797703
|a 1042144647
|a 1042476007
|a 1045541556
|a 1048745587
|a 1053493880
|a 1055398407
|a 1063795615
|a 1066530159
|a 1097905260
|a 1100704574
|a 1101721718
|a 1109180958
|a 1181903283
|a 1184509786
|a 1190685123
|a 1227637475
|a 1228567540
|a 1228613237
|a 1249469687
|a 1258397168
|a 1262685189
|a 1289522540
|a 1290434954
|a 1297847843
|a 1297973908
|a 1298251132
|a 1375504827
|a 1392124467
|
020 |
|
|
|a 9780691128108
|q (electronic bk.)
|
020 |
|
|
|a 0691128103
|q (electronic bk.)
|
020 |
|
|
|a 9781400837199
|
020 |
|
|
|a 1400837197
|
020 |
|
|
|z 9780691128092
|q (acid-free paper)
|
020 |
|
|
|z 069112809X
|q (acid-free paper)
|
020 |
|
|
|a 069112809X
|
020 |
|
|
|a 9780691128092
|
024 |
3 |
|
|a 9780691128092
|
024 |
3 |
|
|a 9780691128108
|
029 |
1 |
|
|a AU@
|b 000050266916
|
029 |
1 |
|
|a AU@
|b 000053281009
|
029 |
1 |
|
|a AU@
|b 000059325869
|
029 |
1 |
|
|a CHBIS
|b 010896030
|
029 |
1 |
|
|a CHVBK
|b 483398535
|
029 |
1 |
|
|a DEBBG
|b BV043065738
|
029 |
1 |
|
|a DEBSZ
|b 421414715
|
029 |
1 |
|
|a GBVCP
|b 1003657060
|
029 |
1 |
|
|a GBVCP
|b 80342390X
|
029 |
1 |
|
|a NZ1
|b 16094933
|
029 |
1 |
|
|a NZ1
|b 16278241
|
035 |
|
|
|a (OCoLC)680126444
|z (OCoLC)827906657
|z (OCoLC)843035855
|z (OCoLC)882240036
|z (OCoLC)961579301
|z (OCoLC)962612367
|z (OCoLC)975027537
|z (OCoLC)975207735
|z (OCoLC)988482227
|z (OCoLC)991964420
|z (OCoLC)1018077532
|z (OCoLC)1037797703
|z (OCoLC)1042144647
|z (OCoLC)1042476007
|z (OCoLC)1045541556
|z (OCoLC)1048745587
|z (OCoLC)1053493880
|z (OCoLC)1055398407
|z (OCoLC)1063795615
|z (OCoLC)1066530159
|z (OCoLC)1097905260
|z (OCoLC)1100704574
|z (OCoLC)1101721718
|z (OCoLC)1109180958
|z (OCoLC)1181903283
|z (OCoLC)1184509786
|z (OCoLC)1190685123
|z (OCoLC)1227637475
|z (OCoLC)1228567540
|z (OCoLC)1228613237
|z (OCoLC)1249469687
|z (OCoLC)1258397168
|z (OCoLC)1262685189
|z (OCoLC)1289522540
|z (OCoLC)1290434954
|z (OCoLC)1297847843
|z (OCoLC)1297973908
|z (OCoLC)1298251132
|z (OCoLC)1375504827
|z (OCoLC)1392124467
|
037 |
|
|
|a 22573/ctt6n4pxv
|b JSTOR
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA649
|b .S37 2007
|
072 |
|
7 |
|a MAT
|x 012030
|2 bisacsh
|
082 |
0 |
4 |
|a 516.3/6
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Schwartz, Richard Evan.
|
245 |
1 |
0 |
|a Spherical CR geometry and Dehn surgery /
|c Richard Evan Schwartz.
|
260 |
|
|
|a Princeton :
|b Princeton University Press,
|c 2007.
|
300 |
|
|
|a 1 online resource (xii, 186 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Annals of mathematics studies ;
|v no. 165
|
504 |
|
|
|a Includes bibliographical references (pages 181-184) and index.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2010.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title; Copyright; Dedication; Contents; Preface; PART 1. BASIC MATERIAL; Chapter 1. Introduction; 1.1 Dehn Filling and Thurston's Theorem; 1.2 Definition of a Horotube Group; 1.3 The Horotube Surgery Theorem; 1.4 Reflection Triangle Groups; 1.5 Spherical CR Structures; 1.6 The Goldman-Parker Conjecture; 1.7 Organizational Notes; Chapter 2. Rank-One Geometry; 2.1 Real Hyperbolic Geometry; 2.2 Complex Hyperbolic Geometry; 2.3 The Siegel Domain and Heisenberg Space; 2.4 The Heisenberg Contact Form; 2.5 Some Invariant Functions; 2.6 Some Geometric Objects.
|
505 |
8 |
|
|a Chapter 3. Topological Generalities3.1 The Hausdorff Topology; 3.2 Singular Models and Spines; 3.3 A Transversality Result; 3.4 Discrete Groups; 3.5 Geometric Structures; 3.6 Orbifold Fundamental Groups; 3.7 Orbifolds with Boundary; Chapter 4. Reflection Triangle Groups; 4.1 The Real Hyperbolic Case; 4.2 The Action on the Unit Tangent Bundle; 4.3 Fuchsian Triangle Groups; 4.4 Complex Hyperbolic Triangles; 4.5 The Representation Space; 4.6 The Ideal Case; Chapter 5. Heuristic Discussion of Geometric Filling; 5.1 A Dictionary; 5.2 The Tree Example; 5.3 Hyperbolic Case: Before Filling.
|
505 |
8 |
|
|a 5.4 Hyperbolic Case: After Filling5.5 Spherical CR Case: Before Filling; 5.6 Spherical CR Case: After Filling; 5.7 The Tree Example Revisited; PART 2. PROOF OF THE HST; Chapter 6. Extending Horotube Functions; 6.1 Statement of Results; 6.2 Proof of the Extension Lemma; 6.3 Proof of the Auxiliary Lemma; Chapter 7. Transplanting Horotube Functions; 7.1 Statement of Results; 7.2 A Toy Case; 7.3 Proof of the Transplant Lemma; Chapter 8. The Local Surgery Formula; 8.1 Statement of Results; 8.2 The Canonical Marking; 8.3 The Homeomorphism; 8.4 The Surgery Formula; Chapter 9. Horotube Assignments.
|
505 |
8 |
|
|a 9.1 Basic Definitions9.2 The Main Result; 9.3 Corollaries; Chapter 10. Constructing the Boundary Complex; 10.1 Statement of Results; 10.2 Proof of the Structure Lemma; 10.3 Proof of the Horotube Assignment Lemma; Chapter 11. Extending to the Inside; 11.1 Statement of Results; 11.2 Proof of the Transversality Lemma; 11.3 Proof of the Local Structure Lemma; 11.4 Proof of the Compatibility Lemma; 11.5 Proof of the Finiteness Lemma; Chapter 12. Machinery for Proving Discreteness; 12.1 Chapter Overview; 12.2 Simple Complexes; 12.3 Chunks; 12.4 Geometric Equivalence Relations.
|
505 |
8 |
|
|a 12.5 Alignment by a Simple ComplexChapter 13. Proof of the HST; 13.1 The Unperturbed Case; 13.2 The Perturbed Case; 13.3 Defining the Chunks; 13.4 The Discreteness Proof; 13.5 The Surgery Formula; 13.6 Horotube Group Structure; 13.7 Proof of Theorem 1.11; 13.8 Dealing with Elliptics; PART 3. THE APPLICATIONS; Chapter 14. The Convergence Lemmas; 14.1 Statement of Results; 14.2 Preliminary Lemmas; 14.3 Proof of the Convergence Lemma I; 14.4 Proof of the Convergence Lemma II; 14.5 Proof of the Convergence Lemma III; Chapter 15. Cusp Flexibility; 15.1 Statement of Results.
|
520 |
|
|
|a This book proves an analogue of William Thurston's celebrated hyperbolic Dehn surgery theorem in the context of complex hyperbolic discrete groups, and then derives two main geometric consequences from it. The first is the construction of large numbers of closed real hyperbolic 3-manifolds which bound complex hyperbolic orbifolds--the only known examples of closed manifolds that simultaneously have these two kinds of geometric structures. The second is a complete understanding of the structure of complex hyperbolic reflection triangle groups in cases where the angle is small. In an accessib.
|
546 |
|
|
|a English.
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Evidence Based Acquisitions
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Demand Driven Acquisitions (DDA)
|
590 |
|
|
|a JSTOR
|b Books at JSTOR All Purchased
|
650 |
|
0 |
|a CR submanifolds.
|
650 |
|
0 |
|a Dehn surgery (Topology)
|
650 |
|
0 |
|a Three-manifolds (Topology)
|
650 |
|
6 |
|a CR-sous-variétés.
|
650 |
|
6 |
|a Chirurgie de Dehn (Topologie)
|
650 |
|
6 |
|a Variétés topologiques à 3 dimensions.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x Differential.
|2 bisacsh
|
650 |
|
7 |
|a CR submanifolds
|2 fast
|
650 |
|
7 |
|a Dehn surgery (Topology)
|2 fast
|
650 |
|
7 |
|a Three-manifolds (Topology)
|2 fast
|
773 |
0 |
|
|t Academic Search Complete
|d EBSCO
|
776 |
0 |
8 |
|i Print version:
|a Schwartz, Richard Evan.
|t Spherical CR geometry and Dehn surgery.
|d Princeton : Princeton University Press, 2007
|w (DLC) 2006050589
|w (OCoLC)71237491
|
830 |
|
0 |
|a Annals of mathematics studies ;
|v no. 165.
|
856 |
4 |
0 |
|u https://jstor.uam.elogim.com/stable/10.2307/j.ctt6wq0j8
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH28073788
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10874632
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 454413
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis28409099
|
938 |
|
|
|a Internet Archive
|b INAR
|n sphericalcrgeome0000schw
|
994 |
|
|
|a 92
|b IZTAP
|