Cargando…

Outer billiards on kites /

"Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B.H. Neumann introduced this system in the 1950s, and J. Moser popularized it as a toy model for celestial mechanics. All along, the so-called Moser-Neumann question has been one of the central problem...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schwartz, Richard Evan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2009.
Colección:Annals of mathematics studies ; no. 171.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 JSTOR_ocn592756158
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 100402s2009 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d EBLCP  |d YDXCP  |d IDEBK  |d E7B  |d OCLCQ  |d COO  |d CDX  |d OCLCQ  |d OCLCE  |d OCLCQ  |d REDDC  |d OCLCQ  |d DEBSZ  |d OKU  |d JSTOR  |d OCLCF  |d OCLCQ  |d NLGGC  |d OCLCQ  |d S3O  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d UIU  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OTZ  |d MERUC  |d OCLCQ  |d IOG  |d U3W  |d EZ9  |d STF  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d LVT  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d CEF  |d UX1  |d OCLCQ  |d HS0  |d UWK  |d ADU  |d OCLCQ  |d K6U  |d OCLCO  |d UKCRE  |d OCLCQ  |d S2H  |d OCLCO  |d OCL  |d OCLCQ 
015 |a GBA979004  |2 bnb 
016 7 |a 015346788  |2 Uk 
019 |a 632921998  |a 647874700  |a 700404667  |a 760717855  |a 961638853  |a 962624204  |a 965989504  |a 974576256  |a 974616346  |a 988458529  |a 991915008  |a 994917345  |a 1018073739  |a 1037931694  |a 1038685414  |a 1041808848  |a 1045573149  |a 1048341533  |a 1055374296  |a 1063827061  |a 1063977791  |a 1096412239  |a 1100673888  |a 1101717158  |a 1109082578  |a 1110279155  |a 1112870011  |a 1119035905  |a 1153499655  |a 1157926376  |a 1178721672  |a 1181903604 
020 |a 9781400831975  |q (electronic bk.) 
020 |a 1400831970  |q (electronic bk.) 
020 |a 1282458582 
020 |a 9781282458581 
020 |a 9786612458583 
020 |a 6612458585 
020 |z 0691142483 
020 |z 9780691142487 
020 |z 0691142491 
020 |z 9780691142494 
024 7 |a 10.1515/9781400831975  |2 doi 
024 8 |a 9786612458583 
029 1 |a AU@  |b 000051400448 
029 1 |a CDX  |b 12123286 
029 1 |a CHBIS  |b 010688428 
029 1 |a CHVBK  |b 364629770 
029 1 |a DEBBG  |b BV043142679 
029 1 |a DEBBG  |b BV044142058 
029 1 |a DEBSZ  |b 372818595 
029 1 |a DEBSZ  |b 37931410X 
029 1 |a DEBSZ  |b 42191159X 
029 1 |a GBVCP  |b 100361941X 
029 1 |a HEBIS  |b 293916810 
029 1 |a NZ1  |b 14244735 
029 1 |a AU@  |b 000068766705 
029 1 |a DKDLA  |b 820120-katalog:999932273405765 
035 |a (OCoLC)592756158  |z (OCoLC)632921998  |z (OCoLC)647874700  |z (OCoLC)700404667  |z (OCoLC)760717855  |z (OCoLC)961638853  |z (OCoLC)962624204  |z (OCoLC)965989504  |z (OCoLC)974576256  |z (OCoLC)974616346  |z (OCoLC)988458529  |z (OCoLC)991915008  |z (OCoLC)994917345  |z (OCoLC)1018073739  |z (OCoLC)1037931694  |z (OCoLC)1038685414  |z (OCoLC)1041808848  |z (OCoLC)1045573149  |z (OCoLC)1048341533  |z (OCoLC)1055374296  |z (OCoLC)1063827061  |z (OCoLC)1063977791  |z (OCoLC)1096412239  |z (OCoLC)1100673888  |z (OCoLC)1101717158  |z (OCoLC)1109082578  |z (OCoLC)1110279155  |z (OCoLC)1112870011  |z (OCoLC)1119035905  |z (OCoLC)1153499655  |z (OCoLC)1157926376  |z (OCoLC)1178721672  |z (OCoLC)1181903604 
037 |a 245858  |b MIL 
037 |a 22573/ctt11c8s  |b JSTOR 
042 |a dlr 
050 4 |a QA685  |b .S45 2009eb 
072 7 |a MAT  |x 012040  |2 bisacsh 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 516.9  |2 22 
049 |a UAMI 
100 1 |a Schwartz, Richard Evan. 
245 1 0 |a Outer billiards on kites /  |c Richard Evan Schwartz. 
260 |a Princeton :  |b Princeton University Press,  |c 2009. 
300 |a 1 online resource (xii, 306 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Annals of mathematics studies ;  |v no. 171 
504 |a Includes bibliographical references and index. 
505 0 |a Introduction -- The arithmetic graph -- The hexagrid theorem -- Period copying -- Proof of the erratic orbits theorem -- The master picture theorem -- The pinwheel lemma -- The torus lemma -- The strip functions -- Proof of the master picture theorem -- Proof of the embedding theorem -- Extension and symmetry -- Proof of hexagrid theorem I -- The barrier theorem -- Proof of hexagrid theorem II -- Proof of the intersection lemma -- Diophantine approximation -- The diophantine lemma -- The decomposition theorem -- Existence of strong sequences -- Structure of the inferior and superior sequences -- The fundamental orbit -- The comet theorem -- Dynamical consequences -- Geometric consequences -- Proof of the copy theorem -- Pivot arcs in the even case -- Proof of the pivot theorem -- Proof of the period theorem -- Hovering components -- Proof of the low vertex theorem -- Structure of periodic points -- Self-similarity -- General orbits on kites -- General quadrilaterals. 
520 |a "Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B.H. Neumann introduced this system in the 1950s, and J. Moser popularized it as a toy model for celestial mechanics. All along, the so-called Moser-Neumann question has been one of the central problems in the field. This question asks whether or not one can have an outer billiards system with an unbounded orbit. The Moser-Neumann question is an idealized version of the question of whether, because of small disturbances in its orbit, the Earth can break out of its orbit and fly away from the Sun. In Outer Billiards on Kites, Richard Schwartz presents his affirmative solution to the Moser-Neumann problem. He shows that an outer billiards system can have an unbounded orbit when defined relative to any irrational kite. A kite is a quadrilateral having a diagonal that is a line of bilateral symmetry. The kite is irrational if the other diagonal divides the quadrilateral into two triangles whose areas are not rationally related. In addition to solving the basic problem, Schwartz relates outer billiards on kites to such topics as Diophantine approximation, the modular group, self-similar sets, polytope exchange maps, profinite completions of the integers, and solenoids--connections that together allow for a fairly complete analysis of the dynamical system."--Publisher website 
588 0 |a Print version record. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Hyperbolic spaces. 
650 0 |a Singularities (Mathematics) 
650 0 |a Transformations (Mathematics) 
650 0 |a Geometry, Plane. 
650 0 |a Geometry, Modern  |x Plane. 
650 6 |a Espaces hyperboliques. 
650 6 |a Singularités (Mathématiques) 
650 6 |a Géométrie plane. 
650 7 |a MATHEMATICS  |x Geometry  |x Non-Euclidean.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Geometry, Modern  |x Plane.  |2 fast  |0 (OCoLC)fst00940926 
650 7 |a Geometry, Plane.  |2 fast  |0 (OCoLC)fst00940930 
650 7 |a Hyperbolic spaces.  |2 fast  |0 (OCoLC)fst00965723 
650 7 |a Singularities (Mathematics)  |2 fast  |0 (OCoLC)fst01119502 
650 7 |a Transformations (Mathematics)  |2 fast  |0 (OCoLC)fst01154653 
776 0 8 |i Print version:  |a Schwartz, Richard Evan.  |t Outer billiards on kites.  |d Princeton : Princeton University Press, 2009  |z 9780691142494  |w (DLC) 2009012013  |w (OCoLC)317824491 
830 0 |a Annals of mathematics studies ;  |v no. 171. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7t77g  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28073947 
938 |a Coutts Information Services  |b COUT  |n 12123286 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL483585 
938 |a ebrary  |b EBRY  |n ebr10364739 
938 |a EBSCOhost  |b EBSC  |n 305772 
938 |a YBP Library Services  |b YANK  |n 3168712 
994 |a 92  |b IZTAP