Cargando…

Understanding the infinite /

How can the infinite, a subject so remote from our finite experience, be an everyday tool for the working mathematician? Shaughan Levine attempts to answer this question using a blend of history, philosophy, mathematics and logic.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lavine, Shaughan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, Mass. : Harvard University Press, 1998.
Edición:1st Harvard University Press pbk. ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 JSTOR_ocn432695222
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 090824t19981994maua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d OCLCF  |d NLGGC  |d YDXCP  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AGLDB  |d ZCU  |d MERUC  |d OCLCQ  |d VTS  |d ICG  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d K6U  |d OCLCQ  |d AJS  |d JSTOR  |d OCLCO  |d SGP  |d OCLCQ 
019 |a 923109953 
020 |a 9780674039995  |q (electronic bk.) 
020 |a 0674039998  |q (electronic bk.) 
029 1 |a AU@  |b 000051598976 
029 1 |a AU@  |b 000069391367 
029 1 |a DEBBG  |b BV043132079 
029 1 |a DEBBG  |b BV044099249 
029 1 |a DEBSZ  |b 42196975X 
029 1 |a DEBSZ  |b 449688976 
029 1 |a GBVCP  |b 80297452X 
035 |a (OCoLC)432695222  |z (OCoLC)923109953 
037 |a 22573/ctv1q3jw6m  |b JSTOR 
050 4 |a QA8.4  |b .L38 1998eb 
072 7 |a MAT  |x 028000  |2 bisacsh 
072 7 |a PHI  |x 000000  |2 bisacsh 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.322  |2 22 
084 |a CC 3700  |2 rvk  |0 (DE-625)rvk/17620 
049 |a UAMI 
100 1 |a Lavine, Shaughan. 
245 1 0 |a Understanding the infinite /  |c Shaughan Lavine. 
250 |a 1st Harvard University Press pbk. ed. 
260 |a Cambridge, Mass. :  |b Harvard University Press,  |c 1998. 
300 |a 1 online resource (ix, 372 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Originally published 1994. 
504 |a Includes bibliographical references (pages 329-347) and index. 
588 0 |a Print version record. 
505 0 |a Preface -- Contents -- I. Introduction -- II. Infinity, Mathematicsâ€? Persistent Suitor -- 1. Incommensurable Lengths, Irrational Numbers -- 2. Newton and Leibniz -- 3. Go Forward, and Faith Will Come to You -- 4. Vibrating Strings -- 5. Infinity Spurned -- 6. Infinity Embraced -- III. Sets of Points -- 1. Infinite Sizes -- 2. Infinite Orders -- 3. Integration -- 4. Absolute vs. Transfinite -- 5. Paradoxes -- IV. What Are Sets? -- 1. Russell -- 2. Cantor -- 3. Appendix A: Letter from Cantor to Jourdain, 9 July 1904 
505 8 |a 4. Appendix B: On an Elementary Question of Set TheoryV. The Axiomatization of Set Theory -- 1. The Axiom of Choice -- 2. The Axiom of Replacement -- 3. Definiteness and Skolemâ€?s Paradox -- 4. Zermelo -- 5. Go Forward, and Faith Will Come to You -- VI. Knowing the Infinite -- 1. What Do We Know? -- 2. What Can We Know? -- 3. Getting from Here to There -- 4. Appendix -- VII. Leaps of Faith -- 1. Intuition -- 2. Physics -- 3. Modality -- 4. Second-Order Logic -- VIII. From Here to Infinity -- 1. Who Needs Self-Evidence? -- 2. Picturing the Infinite 
505 8 |a 3. The Finite Mathematics of Indefinitely Large Size4. The Theory of Zillions -- IX. Extrapolations -- 1. Natural Models -- 2. Many Models -- 3. One Model or Many? Sets and Classes -- 4. Natural Axioms -- 5. Second Thoughts -- 6. Schematic and Generalizable Variables -- Bibliography -- Index 
520 |a How can the infinite, a subject so remote from our finite experience, be an everyday tool for the working mathematician? Shaughan Levine attempts to answer this question using a blend of history, philosophy, mathematics and logic. 
520 |b How can the infinite, a subject so remote from our finite experience, be an everyday tool for the working of a mathematician? Blending history, philosophy, mathematics, and logic, the author seeks to answers this question. Making use of the mathematical work of Jan Mycielski, he demonstrates that knowledge of the infinite is possible, even according to strict standards that require some intuitive basis for knowledge. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Mathematics  |x Philosophy. 
650 6 |a Mathématiques  |x Philosophie. 
650 7 |a MATHEMATICS  |x Set Theory.  |2 bisacsh 
650 7 |a PHILOSOPHY  |x General.  |2 bisacsh 
650 7 |a Mathematics  |x Philosophy.  |2 fast  |0 (OCoLC)fst01012213 
653 0 |a Sets (Mathematics) 
776 0 8 |i Print version:  |a Lavine, Shaughan.  |t Understanding the infinite.  |b 1st Harvard University Press pbk. ed.  |d Cambridge, Mass. : Harvard University Press, 1998  |z 0674921178  |z 9780674921177  |w (DLC) 93049697  |w (OCoLC)42201841 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv1q3z2mm  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3300264 
938 |a EBSCOhost  |b EBSC  |n 282772 
938 |a YBP Library Services  |b YANK  |n 3068538 
994 |a 92  |b IZTAP