Cargando…

Selfsimilar processes /

The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Embrechts, Paul, 1953-
Otros Autores: Maejima, Makoto
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, ©2002.
Colección:Princeton series in applied mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 JSTOR_ocm52255009
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cn|||||||||
008 030515s2002 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCG  |d OCLCQ  |d OCLCF  |d OCLCO  |d NLGGC  |d OCLCQ  |d E7B  |d REDDC  |d EBLCP  |d MERUC  |d IDEBK  |d DEBSZ  |d JSTOR  |d OCLCQ  |d COO  |d AZK  |d COCUF  |d UIU  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OTZ  |d OCLCQ  |d IOG  |d U3W  |d ROC  |d EZ9  |d MNS  |d RCC  |d STF  |d WRM  |d VTS  |d XQH  |d NRAMU  |d MUO  |d ICG  |d OCLCQ  |d INT  |d VT2  |d OCLCQ  |d WYU  |d LVT  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCQ  |d UKCRE  |d AJS  |d UWK  |d IEEEE  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 437140445  |a 609842105  |a 646805524  |a 961551203  |a 962621966  |a 988453797  |a 992025595  |a 994983506  |a 1020518905  |a 1037941413  |a 1038650389  |a 1045473649  |a 1055396575  |a 1064070617  |a 1153478055  |a 1181910092 
020 |a 1400814243  |q (electronic bk.) 
020 |a 9781400814244  |q (electronic bk.) 
020 |a 9781400825103  |q (electronic bk.) 
020 |a 1400825105  |q (electronic bk.) 
020 |z 0691096279  |q (alk. paper) 
020 |z 9780691096278 
024 7 |a 10.1515/9781400825103  |2 doi 
029 1 |a AU@  |b 000051571596 
029 1 |a AU@  |b 000054154707 
029 1 |a AU@  |b 000066750046 
029 1 |a CHBIS  |b 010686119 
029 1 |a CHVBK  |b 364490020 
029 1 |a DEBBG  |b BV043131760 
029 1 |a DEBBG  |b BV044137075 
029 1 |a DEBSZ  |b 379310473 
029 1 |a DEBSZ  |b 422433497 
029 1 |a DKDLA  |b 820120-katalog:999942555705765 
029 1 |a GBVCP  |b 1003566669 
029 1 |a GBVCP  |b 800949706 
029 1 |a HEBIS  |b 293915652 
029 1 |a NZ1  |b 14244622 
035 |a (OCoLC)52255009  |z (OCoLC)437140445  |z (OCoLC)609842105  |z (OCoLC)646805524  |z (OCoLC)961551203  |z (OCoLC)962621966  |z (OCoLC)988453797  |z (OCoLC)992025595  |z (OCoLC)994983506  |z (OCoLC)1020518905  |z (OCoLC)1037941413  |z (OCoLC)1038650389  |z (OCoLC)1045473649  |z (OCoLC)1055396575  |z (OCoLC)1064070617  |z (OCoLC)1153478055  |z (OCoLC)1181910092 
037 |a 22573/ctt10m2m  |b JSTOR 
037 |a 9452497  |b IEEE 
050 4 |a QA274.9  |b .E43 2002eb 
072 7 |a MAT  |x 029040  |2 bisacsh 
082 0 4 |a 519.23  |2 21 
084 |a SK 820  |2 rvk 
049 |a UAMI 
100 1 |a Embrechts, Paul,  |d 1953- 
245 1 0 |a Selfsimilar processes /  |c Paul Embrechts and Makoto Maejima. 
260 |a Princeton, N.J. :  |b Princeton University Press,  |c ©2002. 
300 |a 1 online resource (x, 111 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Princeton series in applied mathematics 
504 |a Includes bibliographical references (pages 101-108) and index. 
588 0 |a Print version record. 
505 0 |a Contents; Preface; Chapter 1. Introduction; Chapter 2. Some Historical Background; Chapter 3. Selfsimilar Processes with Stationary Increments; Chapter 4. Fractional Brownian Motion; Chapter 5. Selfsimilar Processes with Independent Increments; Chapter 6. Sample Path Properties of Selfsimilar Stable Processes with Stationary Increments; Chapter 7. Simulation of Selfsimilar Processes; Chapter 8. Statistical Estimation; Chapter 9. Extensions; References; Index. 
520 |a The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity t. 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Self-similar processes. 
650 0 |a Distribution (Probability theory) 
650 6 |a Processus autosimilaires. 
650 6 |a Distribution (Théorie des probabilités) 
650 7 |a distribution (statistics-related concept)  |2 aat 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Stochastic Processes.  |2 bisacsh 
650 7 |a Distribution (Probability theory)  |2 fast 
650 7 |a Self-similar processes  |2 fast 
700 1 |a Maejima, Makoto. 
776 0 8 |i Print version:  |a Embrechts, Paul, 1953-  |t Selfsimilar processes.  |d Princeton, N.J. : Princeton University Press, ©2002  |z 0691096279  |w (DLC) 2002108314  |w (OCoLC)48837321 
830 0 |a Princeton series in applied mathematics. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7t1hk  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26387204 
938 |a EBL - Ebook Library  |b EBLB  |n EBL445477 
938 |a ebrary  |b EBRY  |n ebr10284069 
938 |a EBSCOhost  |b EBSC  |n 81049 
938 |a YBP Library Services  |b YANK  |n 2345704 
994 |a 92  |b IZTAP