Cargando…

A concise introduction to quantum mechanics /

Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Swanson, Mark S., 1947- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2018]
Colección:IOP (Series). Release 4.
IOP concise physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 4500
001 IOP_9781681747163
003 IOP
005 20180315215527.0
006 m eo d
007 cr cn |||m|||a
008 180314s2018 cau ob 000 0 eng d
020 |a 9781681747163  |q ebook 
020 |a 9781681747187  |q mobi 
020 |z 9781681747170  |q print 
024 7 |a 10.1088/978-1-6817-4716-3  |2 doi 
035 |a (CaBNVSL)thg00975667 
035 |a (OCoLC)1028742490 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QC174.12  |b .S833 2018eb 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
082 0 4 |a 530.12  |2 23 
100 1 |a Swanson, Mark S.,  |d 1947-  |e author. 
245 1 2 |a A concise introduction to quantum mechanics /  |c Mark S. Swanson. 
264 1 |a San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) :  |b Morgan & Claypool Publishers,  |c [2018] 
264 2 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2018] 
300 |a 1 online resource (various pagings). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release 4] 
490 1 |a IOP concise physics,  |x 2053-2571 
500 |a "Version: 20180201"--Title page verso. 
500 |a "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Classical mechanics and electromagnetism -- 1.1. Newtonian mechanics -- 1.2. Light and electromagnetism -- 1.3. Properties of Newtonian point particle solutions 
505 8 |a 2. The origins of quantum mechanics -- 2.1. Blackbody radiation and Planck's constant -- 2.2. The photoelectric effect and photons -- 2.3. Electron diffraction and the de Broglie wavelength -- 2.4. Bohr's atom 
505 8 |a 3. The wave function -- 3.1. Basic properties of the wave function -- 3.2. Complex variables -- 3.3. The complex wave function -- 3.4. Fourier series and function spaces -- 3.5. The one-dimensional box 
505 8 |a 4. Wave mechanics -- 4.1. The Schrödinger equation and its general properties -- 4.2. Observables and the wave function -- 4.3. The Heisenberg uncertainty principle -- 4.4. Wave packets 
505 8 |a 5. Applications of wave mechanics -- 5.1. Barrier reflection and tunneling -- 5.2. The one-dimensional harmonic oscillator -- 5.3. The hydrogen atom -- 5.4. Electromagnetic interactions 
505 8 |a 6. Dirac notation, operators, and matrices -- 6.1. Hilbert space -- 6.2. Hilbert space and Dirac notation -- 6.3. Matrices and basic linear algebra -- 6.4. Representations of quantum mechanics -- 6.5. The linear potential in momentum space -- 6.6. Operator techniques in quantum mechanics -- 6.7. Matrix representations of quantum mechanics -- 6.8. Two state oscillations -- 6.9. Electron diffraction revisited 
505 8 |a 7. Angular momentum, spin, and statistics -- 7.1. Symmetry operations -- 7.2. Rotation group theory -- 7.3. Rotations and quantum mechanics -- 7.4. General angular momentum -- 7.5. Electron spin and spinor representations -- 7.6. Multiparticle states and statistics -- 7.7. Angular momentum addition -- 8. Bibliography. 
520 3 |a Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confined to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schrödinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schrödinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic field. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Mark Swanson received his PhD in physics from the University of Missouri at Columbia in 1976. After a post-doctoral appointment at the University of Alberta in Edmonton, he joined the physics department at the University of Connecticut in 1979. His research focused on the relationship between canonical quantization techniques and the functional approach of path integrals, which led to authoring the monograph Path Integrals and Quantum Processes. 
588 0 |a Title from PDF title page (viewed on March 14, 2018). 
650 0 |a Quantum theory. 
650 7 |a Quantum physics (quantum mechanics & quantum field theory).  |2 bicssc 
650 7 |a SCIENCE / Physics / Quantum Theory.  |2 bisacsh 
710 2 |a Morgan & Claypool Publishers,  |e publisher. 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9781681747170 
830 0 |a IOP (Series).  |p Release 4. 
830 0 |a IOP concise physics. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-1-6817-4716-3  |z Texto completo