Cargando…

The electric dipole moment challenge /

The electric dipole moment (EDM) challenge measures a non-zero proton EDM value and this book suggests how the challenge can be met. Any measurably large proton EDM would violate the standard model. The method to be employed uses an intense beam of 'frozen spin' protons circulating for hou...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Talman, Richard, 1934- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2017]
Colección:IOP (Series). Release 3.
IOP concise physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface
  • 1. Symmetry, physical laws, and electric dipole moments
  • 1.1. Introduction
  • 1.2. Force field symmetries
  • 1.3. Why measure EDMs, which, and how?
  • 2. Some essential experiments
  • 2.1. Neutron EDM measurements
  • 2.2. Penning traps and Penning-like traps
  • 2.3. Electron EDM measurement using polar molecule enhancement
  • 2.4. The future
  • 3. Magnetic precessions
  • 3.1. Cyclotron rotation, gyromagnetic ratio, and Larmor precession
  • 3.2. Storage ring EDM measurement
  • 3.3. Spurious magnetic precessions
  • 4. Just enough accelerator physics
  • 4.1. Preview
  • 4.2. The uniform field ring
  • 4.3. Horizontal stability
  • 4.4. Vertical stability
  • 4.5. Simultaneous horizontal and vertical stability
  • 4.6. Dispersion
  • 4.7. Momentum compaction
  • 4.8. Chromaticity
  • 4.9. Transfer matrices
  • 4.10. Transfer matrices for simple elements
  • 4.11. Transfer matrix parameterization
  • 4.12. Strong focusing
  • 4.13. General transverse motion
  • 5. All-electric particle dynamics
  • 5.1. Background
  • 5.2. Introduction
  • 5.3. Particle tracking paradigms
  • 5.4. Relativistic kinematics in central force electric field
  • 6. The all-electric Brookhaven electron storage ring
  • 6.1. Introduction
  • 6.2. Storage rings for frozen spin electrons or protons
  • 6.3. The AGS electron analogue ring
  • 6.4. Current day simulation of 1955 machine studies tune plane scan
  • 7. A self-magnetometer storage ring
  • 7.1. Abstract
  • 7.2. Introduction
  • 7.3. Orbit equations for the storage ring bottle
  • 7.4. Self-magnetometer precision
  • 8. Frequency domain EDM experiment design
  • 8.1. Introduction
  • 8.2. Proposed method
  • 8.3. Error analysis strategy
  • 8.4. Spin precession
  • 8.5. Conquering [delta]Br field errors
  • 8.6. Roll-reversal accuracy
  • 8.7. Other calculations
  • 8.8. Recapitulation and conclusions
  • 9. The Bargmann-Michel-Telegdi equation
  • 9.1. Relativistic mechanics
  • 9.2. Angular momentum 3-vector s
  • 9.3. The momentum-weighted spin 4-vector W
  • 9.4. Lorentz transformation of 4-spin components
  • 9.5. The BMT equation
  • 9.6. Special cases of spin precession
  • 10. Relativistic Stern-Gerlach deflection
  • 10.1. Introduction
  • 10.2. Brief historical perspective
  • 10.3. Lorentz force law
  • 10.4. Relativistic S-G deflection
  • 10.5. Deflection examples
  • 10.6. Practical observation of S-G deflection
  • 10.7. S-G deflection of a relativistic particle
  • 10.8. S-G specific beam preparation
  • 10.9. Signal levels and background rejection
  • 10.10. Recapitulation and acknowledgements.