Essential mathematics for the physical sciences. Volume I, Homogeneous boundary value problems, Fourier methods, and special functions /
Physics is expressed in the language of mathematics; it is deeply ingrained in how physics is taught and how it's practiced. A study of the mathematics used in science is thus a sound intellectual investment for training as scientists and engineers. This first volume of two is centered on metho...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) :
Morgan & Claypool Publishers,
[2017]
|
Colección: | IOP (Series). Release 4.
IOP concise physics. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Partial differential equations
- 2. Separation of variables
- 2.1. Helmholtz equation
- 2.2. Helmholtz equation in rectangular coordinates
- 2.3. Helmholtz equation in cylindrical coordinates
- 2.4. Helmholtz equation in spherical coordinates
- 2.5. Roadmap : where we are headed
- 3. Power-series solutions of ODEs
- 3.1. Analytic functions and the Frobenius method
- 3.2. Ordinary points
- 3.3. Regular singular points
- 3.4. Wronskian method for obtaining a second solution
- 3.5. Bessel and Neumann functions
- 3.6. Legendre polynomials
- 4. Sturm-Liouville theory
- 4.1. Differential equations as operators
- 4.2. Sturm-Liouville systems
- 4.3. The SL eigenvalue problem, L[y] = -[lambda]wy
- 4.4. Dirac delta function
- 4.5. Completeness
- 4.6. Hilbert space : a brief introduction
- 5. Fourier series and integrals
- 5.1. Fourier series
- 5.2. Complex form of Fourier series
- 5.3. General intervals
- 5.4. Parseval's theorem
- 5.5. Back to the delta function
- 5.6. Fourier transform
- 5.7. Convolution integral
- 6. Spherical harmonics and friends
- 6.1. Properties of the Legendre polynomials, Pl(x)
- 6.2. Associated Legendre functions, Pl m(x)
- 6.3. Spherical harmonic functions, Yl m([theta], [phi])
- 6.4. Addition theorem for Yl m([theta], [phi])
- 6.5. Laplace equation in spherical coordinates
- 7. Bessel functions and friends
- 7.1. Small-argument and asymptotic forms
- 7.2. Properties of the Bessel functions, Jn(x)
- 7.3. Orthogonality
- 7.4. Bessel series
- 7.5. Fourier-Bessel transform
- 7.6. Spherical Bessel functions
- 7.7. Expansion of plane waves in spherical coordinates
- Appendices
- A. Topics in linear algebra
- B. Vector calculus
- C. Power series
- D. Gamma function, [Gamma](x).