Cargando…

Lectures on selected topics in mathematical physics : introduction to lie theory with applications /

This book provides an introduction to Lie theory for first-year graduate students and professional physicists who may not have come across the theory in their studies. It is an overview of the theory of finite groups, a brief description of a manifold, and an informal development of the theory of on...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schwalm, W. (William) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2017]
Colección:IOP (Series). Release 3.
IOP concise physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 4500
001 IOP_9781681744490
003 IOP
005 20170505222749.0
006 m eo d
007 cr bn |||m|||a
008 170505s2017 caua ob 000 0 eng d
020 |a 9781681744490  |q ebook 
020 |a 9781681744513  |q mobi 
020 |z 9781681744483  |q print 
024 7 |a 10.1088/978-1-6817-4449-0  |2 doi 
035 |a (CaBNVSL)thg00974219 
035 |a (OCoLC)985718503 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QC20.7.L54  |b S385 2017eb 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15/255  |2 23 
100 1 |a Schwalm, W.  |q (William),  |e author. 
245 1 0 |a Lectures on selected topics in mathematical physics :  |b introduction to lie theory with applications /  |c William A. Schwalm. 
246 3 0 |a Introduction to lie theory with applications. 
264 1 |a San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) :  |b Morgan & Claypool Publishers,  |c [2017] 
264 2 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2017] 
300 |a 1 online resource (various pagings) :  |b illustrations. 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release 3] 
490 1 |a IOP concise physics,  |x 2053-2571 
500 |a "Version: 20170401"--Title page verso. 
500 |a "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a Preface -- Introduction -- 1. Groups -- 1.1. Permutations and symmetries -- 1.2. Subgroups and classes -- 1.3. Representations -- 1.4. Orthogonality 
505 8 |a 2. Lie groups -- 2.1. Lie groups as manifolds -- 2.2. Lie groups as groups of transformations or substitutions -- 2.3. Infinitesimal generators -- 2.4. Generator example: Lorentz boost -- 2.5. Transformations acting in three or more dimensions -- 2.6. Changing coordinates -- 2.7. Changing variables in the generator -- 2.8. Invariant functions, invariant curves, and groups that permute curves in a family -- 2.9. Canonical coordinates for a one-parameter group 
505 8 |a 3. Ordinary differential equations -- 3.1. Prolongation of the group generator and a symmetry criterion -- 3.2. Reformulation of symmetry in terms of partial differential operators -- 3.3. Symmetries in terms of A -- 3.4. Note on evaluating commutators -- 3.5. Symmetries of first-order DEs -- 3.6. Tabulating DEs according to groups they admit -- 3.7. Lie's integrating factor -- 3.8. Finding symmetries of a second order -- 3.9. Using a symmetry to reduce the order -- 3.10. Classical mechanics: N<U+008A>other's theorem. 
520 3 |a This book provides an introduction to Lie theory for first-year graduate students and professional physicists who may not have come across the theory in their studies. It is an overview of the theory of finite groups, a brief description of a manifold, and an informal development of the theory of one-parameter Lie groups. Interested readers should acquire a tool that is complete and that actually works to simplify or solve differential equations as well as moving them on to other topics. 
521 |a First and second year graduate students, and researchers needing an introduction to the subject. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Professor William A Schwalm received his PhD from Montana State University in 1978 in condensed matter theory. He held a postdoctoral position at the University of Utah before coming to UND in 1980. Dr. Schwalm belongs to the American Physical Society. He has received awards for teaching from both UND and the University of Utah. 
588 |a Title from PDF title page (viewed on May 5, 2017). 
650 0 |a Lie groups. 
650 0 |a Lie algebras. 
650 0 |a Mathematical physics. 
650 7 |a Mathematical physics.  |2 bicssc 
650 7 |a SCIENCE / Physics / Mathematical & Computational.  |2 bisacsh 
710 2 |a Morgan & Claypool Publishers,  |e publisher. 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9781681744483 
830 0 |a IOP (Series).  |p Release 3. 
830 0 |a IOP concise physics. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-1-6817-4449-0  |z Texto completo