Cargando…

Understanding the magic of the bicycle : basic scientific explanations to the two-wheeler's mysterious and fascinating behavior /

The bicycle is a common, yet unique mechanical contraption in our world. In spite of this, the bike's physical and mechanical principles are understood by a select few. You do not have to be a genius to join this small group of people who understand the physics of cycling. This is your guide to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Connolly, Joseph W. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2016]
Colección:IOP (Series). Release 3.
IOP concise physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface
  • 1. Introduction--the magic of the wheel
  • 2. The evolution of the bicycle
  • 2.1. Beginnings
  • 2.2. Baron Karl Von Drais's running machine
  • 2.3. The boneshaker
  • 2.4. Early refinements
  • 2.5. High-wheelers
  • 2.6. Further refinements
  • 2.7. The safety bicycle
  • 2.8. Pneumatic tires
  • 2.9. Bearings
  • 2.10. Rider position
  • 2.11. Materials
  • 3. A review of basic ideas
  • 3.1. Algebra
  • 3.2. Trigonometry
  • 3.3. Vectors
  • 3.4. Head to tail method of vector arithmetic
  • 3.5. Resolution into components
  • 3.6. Units of measurement
  • 3.7. Unit conversions
  • 3.8. Density
  • 3.9. Concepts of mass
  • 3.10. Center of mass
  • 3.11. Our standard rider
  • 4. Linear motion
  • 4.1. Kinematics--the study of motion
  • 4.2. Headwinds and tailwinds
  • 4.3. Riding uphill and downhill
  • 5. Forces--Newton's laws of motion
  • 5.1. Newton's First Law of Motion
  • 5.2. Newton's Second Law of Motion
  • 5.3. Units of force, motion, mass
  • 5.4. Newton's Third Law of Motion
  • 5.5. Role of arm muscles
  • 5.6. Frictional forces--a simple model
  • 5.7. Static and sliding friction
  • 5.8. Friction as the propulsion force in walking
  • 5.9. The acceleration and deceleration of the bicycle
  • 5.10. Maximum acceleration of a bicycle
  • 5.11. Velocity and acceleration of a bicycle
  • 5.12. Resistive forces on a moving bicycle
  • 5.13. Air resistance
  • 5.14. Rolling resistance
  • 5.15. Bearing resistance
  • 5.16. Coasting--simplified analysis
  • 5.17. Force analysis walking versus riding
  • 5.18. Average versus instantaneous pedal force
  • 6. Gravity
  • 6.1. The basic physics of gravity
  • 6.2. Weight of objects
  • 6.3. {#x2018}Weight' of object as measured by a scale
  • 6.4. Force of gravity on a slope--the basic physics
  • 6.5. Riding uphill at a constant speed
  • 6.6. Terminal speed
  • 6.7. Terminal speed coasting downhill on a bike
  • 6.8. Personalized determination of resistive force parameters
  • 7. Momentum-impulse
  • 7.1. The basic physics of momentum
  • 7.2. Momentum and Newton's Second Law
  • 7.3. Impulse
  • 7.4. Momentum and impulse aspects of bicycle accidents
  • 8. Work-energy-power
  • 8.1. Work
  • 8.2. Kinetic energy
  • 8.3. Frictional effects
  • 8.4. Gravitational potential energy
  • 8.5. Conservation of energy
  • 8.6. Energy conversion between kinetic and potential on the bicycle
  • 8.7. Power--the basic physics
  • 8.8. Power and kinetic energy
  • 8.9. Power output to overcome resistive forces on a bike
  • 8.10. Efficiency considerations in muscular effort
  • 8.11. Average speed versus average power
  • 9. Temperature and heat
  • 9.1. Temperature and its measurement
  • 9.2. Heat
  • 9.3. Units of heat
  • 9.4. Heat generation on a bicycle
  • 9.5. Mechanisms for heat transfer
  • 9.6. Conduction
  • 9.7. Convection
  • 9.8. Radiation
  • 9.9. Evaporation
  • 9.10. Cooling effects of evaporation
  • 9.11. Role of cycling clothing
  • 9.12. Wind effects on cooling capacity of evaporation
  • 9.13. Humidity and dew point
  • 9.14. Specific heat
  • 10. Rotational motion
  • 10.1. Kinematics of circular motion
  • 10.2. Dynamics of circular motion
  • 10.3. Rotational kinetic energy
  • 10.4. Moment of inertia of non-point masses
  • 10.5. Moment of inertia and rotational kinetic energy of bicycle wheel
  • 10.6. Angular momentum
  • 10.7. Role of angular momentum in a bicycle
  • 11. Torque--applications to the bicycle
  • 11.1. Basic physics of torque
  • 11.2. Rotational equilibrium
  • 11.3. Mechanical advantage
  • 11.4. Energy aspects of a high mechanical advantage
  • 11.5. Multiple lever system
  • 11.6. Early direct drive bicycles
  • 11.7. High-wheelers
  • 11.8. The safety bicycle
  • 11.9. Force transmission in a geared bicycle
  • 11.10. Multispeed gearing--force analysis
  • 11.11. Gearing and pedaling cadence
  • 11.12. Gearing and pedaling force
  • 11.13. Braking
  • 11.14. Wheelies
  • 11.15. Headers
  • 12. Centripetal acceleration--turning and bicycle stability
  • 12.1. Review of Newton's laws--centripetal force and acceleration
  • 12.2. Making a turn
  • 12.3. Banked surface
  • 12.4. Equilibrium and stability
  • 12.5. Equilibrium and stability with multiple points of support
  • 12.6. Stability of runners
  • 12.7. Stability of sprinter
  • 12.8. Equilibrium and stability with single point of support
  • 12.9. Stability of broom when not in equilibrium
  • 12.10. Stability of bicycle when not in equilibrium
  • 12.11. Self stability of a bicycle
  • 12.12. Summation of bicycle stability
  • Appendices
  • A. Bibliography
  • B. Common unit conversions
  • C. Trigonometric values.