Modeling self-heating effects in nanoscale devices /
Accurate thermal modeling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient he...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) :
Morgan & Claypool Publishers,
[2017]
|
Colección: | IOP (Series). Release 3.
IOP concise physics. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- 1. Introduction
- 1.1. Some general aspects of heat conduction
- 1.2. Solution of the self-heating problem
- 1.3. Modeling heating effects in state of the art devices with the commercial tool SILVACO
- 2. Current state of the art in modeling heating effects in nanoscale devices
- 2.1. Some general considerations about the solution of the heat transport problem in devices
- 2.2. Solving lattice heating problem in nanoscale devices
- 2.3. Multi-scale modeling--modeling of circuits (CS and CD configuration)
- 2.4. Conclusions
- 3. Phonon Monte Carlo simulation
- 3.1. Phonon-phonon scattering
- 3.2. Monte Carlo simulation procedure
- 3.3. Verification of Monte Carlo code
- 3.4. Phonon Monte Carlo results
- 3.5. Conclusions
- 4. Summary
- 4.1. The choice of proper thermal boundary conditions
- 4.2. Thermal conductivity model currently used in the simulator
- 4.3. Multiscale modeling of device + interconnects
- 4.4. Phonon Monte Carlo need and its necessary improvements
- Appendix A. Derivation of energy balance equations for acoustic and optical phonons.