Cargando…

Modeling self-heating effects in nanoscale devices /

Accurate thermal modeling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient he...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Raleva, Katerina (Autor), Shaik, Abdul Rawoof (Autor), Vasileska, Dragica (Autor), Goodnick, Stephen M. (Stephen Marshall), 1955- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2017]
Colección:IOP (Series). Release 3.
IOP concise physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface
  • 1. Introduction
  • 1.1. Some general aspects of heat conduction
  • 1.2. Solution of the self-heating problem
  • 1.3. Modeling heating effects in state of the art devices with the commercial tool SILVACO
  • 2. Current state of the art in modeling heating effects in nanoscale devices
  • 2.1. Some general considerations about the solution of the heat transport problem in devices
  • 2.2. Solving lattice heating problem in nanoscale devices
  • 2.3. Multi-scale modeling--modeling of circuits (CS and CD configuration)
  • 2.4. Conclusions
  • 3. Phonon Monte Carlo simulation
  • 3.1. Phonon-phonon scattering
  • 3.2. Monte Carlo simulation procedure
  • 3.3. Verification of Monte Carlo code
  • 3.4. Phonon Monte Carlo results
  • 3.5. Conclusions
  • 4. Summary
  • 4.1. The choice of proper thermal boundary conditions
  • 4.2. Thermal conductivity model currently used in the simulator
  • 4.3. Multiscale modeling of device + interconnects
  • 4.4. Phonon Monte Carlo need and its necessary improvements
  • Appendix A. Derivation of energy balance equations for acoustic and optical phonons.