Cargando…

Butterfly in the quantum world : the story of the most fascinating quantum fractal /

Butterfly in the Quantum World is the first book ever to tell the story of the "Hofstadter butterfly", a beautiful and fascinating graph lying at the heart of the quantum theory of matter. The butterfly came out of a simple-sounding question: What happens if you immerse a crystal in a magn...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Satija, Indubala I., 1952- (Autor), Hofstadter, Douglas R., 1945- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2016]
Colección:IOP (Series). Release 3.
IOP concise physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Summary
  • Preface
  • Prologue
  • Prelude
  • part I. The butterfly fractal
  • 0. Kiss precise
  • 0.1. Apollonian gaskets and integer wonderlands
  • Appendix. An Apollonian sand painting--the world's largest artwork
  • 1. The fractal family
  • 1.1. The Mandelbrot set
  • 1.2. The Feigenbaum set
  • 1.3. Classic fractals
  • 1.4. The Hofstadter set
  • Appendix. Harper's equation as an iterative mapping
  • 2. Geometry, number theory, and the butterfly : friendly numbers and kissing circles
  • 2.1. Ford circles, the Farey tree, and the butterfly
  • 2.2. A butterfly at every scale--butterfly recursions
  • 2.3. Scaling and universality
  • 2.4. The butterfly and a hidden trefoil symmetry
  • 2.5. Closing words : physics and number theory
  • Appendix A. Hofstadter recursions and butterfly generations
  • Appendix B. Some theorems of number theory
  • Appendix C. Continued-fraction expansions
  • Appendix D. Nearest-integer continued fraction expansion
  • Appendix E. Farey paths and some comments on universality
  • 3 The Apollonian-butterfly connection (ABC)
  • 3.1 Integral Apollonian gaskets (IAG) and the butterfly
  • 3.2 The kaleidoscopic effect and trefoil symmetry
  • 3.3 Beyond Ford Apollonian gaskets and fountain butterflies
  • Appendix. Quadratic Diophantine equations and IAGs
  • 4. Quasiperiodic patterns and the butterfly
  • 4.1. A tale of three irrationals
  • 4.2. Self-similar butterfly hierarchies
  • 4.3. The diamond, golden, and silver hierarchies, and Hofstadter recursions
  • 4.4. Symmetries and quasiperiodicities
  • Appendix. Quasicrystals
  • part II. Butterfly in the quantum world
  • 5. The quantum world
  • 5.1. Wave or particle--what is it?
  • 5.2. Quantization
  • 5.3. What is waving?--The Schrödinger picture
  • 5.4. Quintessentially quantum
  • 5.5. Quantum effects in the macroscopic world
  • 6. A quantum-mechanical marriage and its unruly child
  • 6.1. Two physical situations joined in a quantum-mechanical marriage
  • 6.2. The marvelous pure number [phi]
  • 6.3. Harper's equation, describing Bloch electrons in a magnetic field
  • 6.4. Harper's equation as a recursion relation
  • 6.5. On the key role of inexplicable artistic intuitions in physics
  • 6.6. Discovering the strange eigenvalue spectrum of Harper's equation
  • 6.7. Continued fractions and the looming nightmare of discontinuity
  • 6.8. Polynomials that dance on several levels at once
  • 6.9. A short digression on INT and on perception of visual patterns
  • 6.10. The spectrum belonging to irrational values of [phi] and the "ten-martini problem"
  • 6.11. In which continuity (of a sort) is finally established
  • 6.12. Infinitely recursively scalloped wave functions : cherries on the doctoral sundae
  • 6.13. Closing words
  • Appendix. Supplementary material on Harper's equation
  • part III. Topology and the butterfly
  • 7. A different kind of quantization : the quantum Hall effect
  • 7.1. What is the Hall effect? Classical and quantum answers
  • 7.2. A charged particle in a magnetic field : cyclotron orbits and their quantization
  • 7.3. Landau levels in the Hofstadter butterfly
  • 7.4. Topological insulators
  • Appendix A. Excerpts from the 1985 Nobel Prize press release
  • Appendix B. Quantum mechanics of electrons in a magnetic field
  • Appendix C. Quantization of the Hall conductivity
  • 8. Topology and topological invariants : preamble to the topological aspects of the quantum Hall effect
  • 8.1. A puzzle : the precision and the quantization of Hall conductivity
  • 8.2. Topological invariants
  • 8.3. Anholonomy : parallel transport and the Foucault pendulum
  • 8.4. Geometrization of the Foucault pendulum
  • 8.5. Berry magnetism--effective vector potential and monopoles
  • 8.6. The ESAB effect as an example of anholonomy
  • Appendix. Classical parallel transport and magnetic monopoles
  • 9. The Berry phase and the quantum Hall effect
  • 9.1. The Berry phase
  • 9.2. Examples of Berry phase
  • 9.3. Chern numbers in two-dimensional electron gases
  • 9.4. Conclusion : the quantization of Hall conductivity
  • 9.5. Closing words : topology and physical phenomena
  • Appendix A. Berry magnetism and the Berry phase
  • Appendix B. The Berry phase and 2 x 2 matrices
  • Appendix C. What causes Berry curvature? Dirac strings, vortices, and magnetic monopoles
  • Appendix D. The two-band lattice model for the quantum Hall effect
  • 10. The kiss precise and precise quantization
  • 10.1. Diophantus gives us two numbers for each swath in the butterfly
  • 10.2. Chern labels not just for swaths but also for bands
  • 10.3. A topological map of the butterfly
  • 10.4. Apollonian-butterfly connection : where are the Chern numbers?
  • 10.5. A topological landscape that has trefoil symmetry
  • 10.6. Chern-dressed wave functions
  • 10.7. Summary and outlook
  • part IV. Catching the butterfly
  • 11. The art of tinkering
  • 11.1. The most beautiful physics experiments
  • 12. The butterfly in the laboratory
  • 12.1. Two-dimensional electron gases, superlattices, and the butterfly revealed
  • 12.2. Magical carbon : a new net for the Hofstadter butterfly
  • 12.3. A potentially sizzling hot topic in ultracold atom laboratories
  • Appendix. Excerpts from the 2010 Physics Nobel Prize press release
  • 13. The butterfly gallery : variations on a theme of Philip G Harper
  • 14. Divertimento
  • 15. Gratitude 15-1
  • 16. Poetic math & science
  • 17. Coda.