Structure and evolution of single stars : an introduction /
Structure and Evolution of Single Stars: An introduction is intended for upper-level undergraduates and beginning graduates with a background in physics. Following a brief overview of the background observational material, the basic equations describing the structure and evolution of single stars ar...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) :
Morgan & Claypool Publishers,
[2015]
|
Colección: | IOP (Series). Release 2.
IOP concise physics. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- 1. Observational background
- 1.1. Distances
- 1.2. Stellar brightness and luminosity
- 1.3. Colors
- 1.4. Spectroscopy
- 1.5. Color-magnitude diagrams
- 1.6. Stellar masses
- 1.7. The mass-luminosity relation for main sequence stars
- 1.8. The mass-radius relation for main sequence stars
- 2. The equations of stellar structure : mass conservation and hydrostatic equilibrium
- 2.1. Introduction
- 2.2. The mass conservation equation
- 2.3. The hydrostatic equilibrium equation for a spherical star
- 2.4. The dynamical time scale
- 2.5. The central temperature of the Sun
- 2.6. The central temperatures of main sequence stars
- 2.7. Radiation pressure
- 3. Energy considerations, the source of the Sun's energy, and energy transport
- 3.1. Introduction
- 3.2. The virial theorem
- 3.3. The virial theorem for stars in hydrostatic equilibrium
- 3.4. The conservation of energy equation for a star in hydrostatic equilibrium
- 3.5. Stars in thermal equilibrium
- 3.6. Energy transport
- 3.7. The equation of radiative transfer
- 3.8. Optical depth and effective temperature
- 3.9. Validity of the diffusion approximation
- 4. Convective energy transport
- 4.1. Introduction
- 4.2. The Schwarzschild criterion for convective instability
- 4.3. Including convective energy transport in stellar models
- 5. The equations of stellar evolution and how to solve them
- 5.1. Introduction
- 5.2. The equations of stellar structure
- 5.3. The physical significance of the Eddington luminosity
- 5.4. Equations for composition changes
- 5.5. Solving the equations of stellar evolution
- 5.6. The Newton-Raphson method
- 5.7. Sets of non-linear equations
- 6. Physics of gas and radiation
- 6.1. Introduction
- 6.2. The ideal gas equation of state
- 6.3. The radiation equation of state
- 6.4. The equation of state for a mixture of ideal gas and radiation
- 6.5. The Eddington standard model of stellar structure
- 7. Ionization and recombination
- 7.1. Introduction
- 7.2. The Boltzmann excitation equation
- 7.3. The Saha ionization equation
- 7.4. A difficulty and its resolution
- 7.5. Ionization of hydrogen
- 7.6. The effect of ionization on the adiabatic gradient
- 7.7. The effect of ionization on the specific heat
- 7.8. Pressure ionization
- 7.9. Free energy approach to ionization
- 7.10. A crude model for inclusion of pressure ionization in a thermodynamically consistent way
- 8. The degenerate electron gas
- 8.1. Introduction
- 8.2. Complete electron degeneracy
- 8.3. Limiting forms
- 8.4. The contribution from nuclei at zero temperature
- 8.5. Transition from non-degeneracy to degeneracy
- 8.6. Effects of degeneracy on the adiabatic gradient and the first adiabatic exponent
- 9. Polytropes and the Chandrasekhar mass
- 9.1. Introduction
- 9.2. The Lane-Emden equation
- 9.3. Application to white dwarf stars
- 10. Opacity
- 10.1. Introduction
- 10.2. The Rosseland mean opacity
- 10.3. Opacity mechanisms
- 10.4. Electron scattering opacity
- 10.5. Free-free opacity
- 10.6. Bound-free opacity
- 10.7. Bound-bound opacity
- 10.8. The Rosseland mean opacity for solar composition material
- 11. Nuclear reactions
- 11.1. Introduction
- 11.2. Occurrence of thermonuclear reactions
- 11.3. Cross sections and nuclear reaction rates
- 11.4. The cross section
- 11.5. Evaluation of the reaction rate
- 11.6. Major nuclear burning stages in stars : H burning
- 11.7. Energy generation in the pp-chains and the CNO-cycles
- 11.8. Major nuclear burning stages in stars : He burning
- 11.9. Advanced nuclear burning phases
- 12. Neutrino energy loss processes
- 12.1. Pair annihilation neutrino process (e+ + e- [right arrow] [nu] + [nu][superscript bar])
- 12.2. Plasma neutrino process ([gramma]plasmon [right arrow] [nu] + [nu][superscript bar])
- 12.3. Photo-neutrino process ([gamma] + e [right arrow] e + [nu] + [nu][superscript bar])
- 12.4. Bremsstrahlung neutrino process
- 13. Homology relations
- 13.1. Introduction
- 13.2. Homology of zero age main sequence stars
- 13.3. Sensitivity of stellar structure to nuclear reaction rate
- 13.4. Sensitivity of stellar properties to composition
- 13.5. Stars with convective cores
- 13.6. Stars with convective envelopes
- 14. Hydrogen main sequence stars
- 14.1. Masses of main sequence stars
- 14.2. Lifetimes of main sequence stars
- 14.3. Convection in main sequence stars
- 14.4. Variation of surface properties with mass
- 14.5. Variation of central properties with mass
- 14.6. The theoretical Hertzsprung-Russell diagram
- 15. Helium main sequence stars
- 15.1. Why consider helium main sequence stars?
- 15.2. Homology analysis of helium zero age main sequence stars
- 15.3. Convection in helium main sequence stars
- 15.4. Variation of surface properties with mass
- 15.5. Variation of central properties with mass
- 15.6. The theoretical Hertzsprung-Russell diagram
- 16. The Hayashi line
- 16.1. Introduction
- 16.2. The Hayashi phase
- 17. Star formation
- 17.1. Introduction
- 17.2. The Jeans mass
- 17.3. Fragmentation
- 18. Evolution on the main sequence and beyond
- 18.1. Introduction
- 18.2. Change in luminosity on the main sequence
- 18.3. Evolution of the hydrogen profile
- 18.4. Evolution after hydrogen exhaustion in the core
- 18.5. The Hertzsprung gap
- 19. Evolution on the red giant branch
- 19.1. Introduction
- 19.2. Change in luminosity on the red giant branch
- 19.3. The globular cluster luminosity function bump
- 19.4. The helium core flash
- 19.5. Stability considerations
- 20. Evolution from red giant to white dwarf
- 20.1. Introduction
- 20.2. The horizontal branch
- 20.3. The asymptotic giant branch
- 20.4. The formation of planetary nebulae
- 20.5. The cooling of white dwarfs
- 20.6. The luminosity function of white dwarfs
- 20.7. Masses of white dwarf stars : observational material
- 21. Evolution of massive stars
- 21.1. Introduction
- 21.2. Composition changes in the core
- 21.3. Evolution after the end of core helium burning
- 21.4. Evolution of stars more massive than 8 M[circled dot operator].