Cargando…

Structure and evolution of single stars : an introduction /

Structure and Evolution of Single Stars: An introduction is intended for upper-level undergraduates and beginning graduates with a background in physics. Following a brief overview of the background observational material, the basic equations describing the structure and evolution of single stars ar...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: MacDonald, James (Professor of Astronomy) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2015]
Colección:IOP (Series). Release 2.
IOP concise physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface
  • 1. Observational background
  • 1.1. Distances
  • 1.2. Stellar brightness and luminosity
  • 1.3. Colors
  • 1.4. Spectroscopy
  • 1.5. Color-magnitude diagrams
  • 1.6. Stellar masses
  • 1.7. The mass-luminosity relation for main sequence stars
  • 1.8. The mass-radius relation for main sequence stars
  • 2. The equations of stellar structure : mass conservation and hydrostatic equilibrium
  • 2.1. Introduction
  • 2.2. The mass conservation equation
  • 2.3. The hydrostatic equilibrium equation for a spherical star
  • 2.4. The dynamical time scale
  • 2.5. The central temperature of the Sun
  • 2.6. The central temperatures of main sequence stars
  • 2.7. Radiation pressure
  • 3. Energy considerations, the source of the Sun's energy, and energy transport
  • 3.1. Introduction
  • 3.2. The virial theorem
  • 3.3. The virial theorem for stars in hydrostatic equilibrium
  • 3.4. The conservation of energy equation for a star in hydrostatic equilibrium
  • 3.5. Stars in thermal equilibrium
  • 3.6. Energy transport
  • 3.7. The equation of radiative transfer
  • 3.8. Optical depth and effective temperature
  • 3.9. Validity of the diffusion approximation
  • 4. Convective energy transport
  • 4.1. Introduction
  • 4.2. The Schwarzschild criterion for convective instability
  • 4.3. Including convective energy transport in stellar models
  • 5. The equations of stellar evolution and how to solve them
  • 5.1. Introduction
  • 5.2. The equations of stellar structure
  • 5.3. The physical significance of the Eddington luminosity
  • 5.4. Equations for composition changes
  • 5.5. Solving the equations of stellar evolution
  • 5.6. The Newton-Raphson method
  • 5.7. Sets of non-linear equations
  • 6. Physics of gas and radiation
  • 6.1. Introduction
  • 6.2. The ideal gas equation of state
  • 6.3. The radiation equation of state
  • 6.4. The equation of state for a mixture of ideal gas and radiation
  • 6.5. The Eddington standard model of stellar structure
  • 7. Ionization and recombination
  • 7.1. Introduction
  • 7.2. The Boltzmann excitation equation
  • 7.3. The Saha ionization equation
  • 7.4. A difficulty and its resolution
  • 7.5. Ionization of hydrogen
  • 7.6. The effect of ionization on the adiabatic gradient
  • 7.7. The effect of ionization on the specific heat
  • 7.8. Pressure ionization
  • 7.9. Free energy approach to ionization
  • 7.10. A crude model for inclusion of pressure ionization in a thermodynamically consistent way
  • 8. The degenerate electron gas
  • 8.1. Introduction
  • 8.2. Complete electron degeneracy
  • 8.3. Limiting forms
  • 8.4. The contribution from nuclei at zero temperature
  • 8.5. Transition from non-degeneracy to degeneracy
  • 8.6. Effects of degeneracy on the adiabatic gradient and the first adiabatic exponent
  • 9. Polytropes and the Chandrasekhar mass
  • 9.1. Introduction
  • 9.2. The Lane-Emden equation
  • 9.3. Application to white dwarf stars
  • 10. Opacity
  • 10.1. Introduction
  • 10.2. The Rosseland mean opacity
  • 10.3. Opacity mechanisms
  • 10.4. Electron scattering opacity
  • 10.5. Free-free opacity
  • 10.6. Bound-free opacity
  • 10.7. Bound-bound opacity
  • 10.8. The Rosseland mean opacity for solar composition material
  • 11. Nuclear reactions
  • 11.1. Introduction
  • 11.2. Occurrence of thermonuclear reactions
  • 11.3. Cross sections and nuclear reaction rates
  • 11.4. The cross section
  • 11.5. Evaluation of the reaction rate
  • 11.6. Major nuclear burning stages in stars : H burning
  • 11.7. Energy generation in the pp-chains and the CNO-cycles
  • 11.8. Major nuclear burning stages in stars : He burning
  • 11.9. Advanced nuclear burning phases
  • 12. Neutrino energy loss processes
  • 12.1. Pair annihilation neutrino process (e+ + e- [right arrow] [nu] + [nu][superscript bar])
  • 12.2. Plasma neutrino process ([gramma]plasmon [right arrow] [nu] + [nu][superscript bar])
  • 12.3. Photo-neutrino process ([gamma] + e [right arrow] e + [nu] + [nu][superscript bar])
  • 12.4. Bremsstrahlung neutrino process
  • 13. Homology relations
  • 13.1. Introduction
  • 13.2. Homology of zero age main sequence stars
  • 13.3. Sensitivity of stellar structure to nuclear reaction rate
  • 13.4. Sensitivity of stellar properties to composition
  • 13.5. Stars with convective cores
  • 13.6. Stars with convective envelopes
  • 14. Hydrogen main sequence stars
  • 14.1. Masses of main sequence stars
  • 14.2. Lifetimes of main sequence stars
  • 14.3. Convection in main sequence stars
  • 14.4. Variation of surface properties with mass
  • 14.5. Variation of central properties with mass
  • 14.6. The theoretical Hertzsprung-Russell diagram
  • 15. Helium main sequence stars
  • 15.1. Why consider helium main sequence stars?
  • 15.2. Homology analysis of helium zero age main sequence stars
  • 15.3. Convection in helium main sequence stars
  • 15.4. Variation of surface properties with mass
  • 15.5. Variation of central properties with mass
  • 15.6. The theoretical Hertzsprung-Russell diagram
  • 16. The Hayashi line
  • 16.1. Introduction
  • 16.2. The Hayashi phase
  • 17. Star formation
  • 17.1. Introduction
  • 17.2. The Jeans mass
  • 17.3. Fragmentation
  • 18. Evolution on the main sequence and beyond
  • 18.1. Introduction
  • 18.2. Change in luminosity on the main sequence
  • 18.3. Evolution of the hydrogen profile
  • 18.4. Evolution after hydrogen exhaustion in the core
  • 18.5. The Hertzsprung gap
  • 19. Evolution on the red giant branch
  • 19.1. Introduction
  • 19.2. Change in luminosity on the red giant branch
  • 19.3. The globular cluster luminosity function bump
  • 19.4. The helium core flash
  • 19.5. Stability considerations
  • 20. Evolution from red giant to white dwarf
  • 20.1. Introduction
  • 20.2. The horizontal branch
  • 20.3. The asymptotic giant branch
  • 20.4. The formation of planetary nebulae
  • 20.5. The cooling of white dwarfs
  • 20.6. The luminosity function of white dwarfs
  • 20.7. Masses of white dwarf stars : observational material
  • 21. Evolution of massive stars
  • 21.1. Introduction
  • 21.2. Composition changes in the core
  • 21.3. Evolution after the end of core helium burning
  • 21.4. Evolution of stars more massive than 8 M[circled dot operator].