Cargando…

Multiscale modeling of vascular dynamics of micro- and nano-particles : application to drug delivery system /

Recent advances in this exciting field see the potential to employ nanomedicine and game-changing methods to deliver drug molecules directly to diseased sites. To optimize and then enhance efficacy and specificity, the control and guidance of drug carriers in vasculature become crucial. The current...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ye, Huilin (Mechanical engineer) (Autor), Shen, Zhiqiang (Mechanical engineer) (Autor), Li, Ying (Ph. D. in mechanical engineering) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2019]
Colección:IOP (Series). Release 6.
IOP concise physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Background
  • 1.1. Blood flow in human vasculature
  • 1.2. Vascular targeting and margination of particles in blood flow
  • 1.3. Adhesion of particles on endothelium wall
  • part I. Numerical method
  • 2. Numerical methods: fluid-structure interaction and adhesive dynamics
  • 2.1. Fluid-structure interaction
  • 2.2. Adhesive dynamics
  • 2.3. Validation of numerical method
  • part II. Applications
  • 3. Anomalous vascular dynamics of nanoworms within blood flow
  • 3.1. Motivation
  • 3.2. Experimental and computational results
  • 4. Adhesion behavior of a single cell on the endothelial wall
  • 4.1. Introduction
  • 4.2. Computational model
  • 4.3. Results and discussion
  • 5. Localization of soft particles: margination and adhesion
  • 5.1. Introduction
  • 5.2. Physical problem and computational method
  • 5.3. Results and discussion
  • 6. Shape-dependent transport of micro-particles in blood flow: from margination to adhesion
  • 6.1. Introduction
  • 6.2. Computational model setup
  • 6.3. Results and discussion
  • 7. Conclusion and perspective
  • Appendix A. Coarse-grained potential for RBCs.