Maple : a primer /
Maple is a comprehensive symbolic mathematics application which is well suited for demonstrating physical science topics and solving associated problems. This book records the author's journey of discovery; he was familiar with SMath but not with Maple and set out to learn the more advanced app...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) :
Morgan & Claypool Publishers,
[2019]
|
Colección: | IOP (Series). Release 6.
IOP concise physics. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Starting Maple
- 1.1. What is Maple?
- 1.2. The Maple interface
- 1.3. Entering simple expressions
- 1.4. The use of evalf[d](term)
- 1.5. Some handy algebraic commands
- 1.6. Context menus
- 1.7. Formatted output with printf
- 1.8. Data structures
- 1.9. Defining a function
- 1.10. Debugging a worksheet
- 2. Introductory examples
- 2.1. Ammonia
- 2.2. Water pump
- 2.3. Telescope resolution
- 2.4. Velocity of a bullet
- 2.5. Solve puzzle
- 2.6. Vertex form
- 2.7. Classic inclined plane problem
- 2.8. Baseball problem
- 2.9. Center of mass
- 2.10. Trough problem
- 3. Plotting with Maple
- 3.1. Starting with plot
- 3.2. Plot tools
- 3.3. Customizing with the context menu
- 3.4. Customizing a plot with parameters
- 3.5. A logarithmic plot
- 3.6. Using display for multifunction plots
- 3.7. Two plots side by side
- 3.8. Plotting a family of curves
- 3.9. Plotting digitalized data
- 3.10. Parametric plots
- 3.11. Using the coords = polar option
- 3.12. Implicit plots
- 3.13. Animated plots
- 3.14. Exploring with the Explore command
- 3.15. Plot with two axes
- 3.16. Three-dimensional plots
- 4. Solving equations and systems of equations
- 4.1. The solve command
- 4.2. Solving inequalities
- 4.3. Stress analysis
- 4.4. The assign command
- 4.5. The fsolve command
- 4.6. Systems of equations with fsolve
- 4.7. Finding complex roots
- 4.8. Restricting the root to a range
- 4.9. Example of using isolve
- 4.10. Off to Mars
- 5. Using units and physical constants
- 5.1. Some basic examples
- 5.2. Examples of usage
- 5.3. Using the Units command
- 5.4. Temperature conversions
- 5.5. Physical constants
- 5.6. Gravity constants G and g
- 5.7. Pump problem revisited
- 6. Linear algebra
- 6.1. Matrices and vectors
- 6.2. Simple matrix and vector math
- 6.3. Linear algebra
- 6.4. Solving a system of equations
- 6.5. Introduction to eigenvectors and eigenvalues
- 6.6. Notes on Maple vector commands
- 6.7. Some vector calculations
- 7. Introduction to calculus
- 7.1. Looking for the limit
- 7.2. Some differentiation examples
- 7.3. The D operator
- 7.4. Implicit differentiation
- 7.5. Examples of critical points
- 7.6. Some integration examples
- 7.7. Definite integrals
- 7.8. The assume command
- 7.9. Finding the area between two curves
- 7.10. Introduction to ODEs
- 8. Differential equations
- 8.1. Initial value problems (IVPs)
- 8.2. Entering ODEs and initial/boundary conditions
- 8.3. Boundary value problems (BVPs)
- 8.4. Family of solutions
- 8.5. Numerical integration
- 8.6. The simple pendulum
- 8.7. Coupled ODEs
- 8.8. Singular and general solutions
- 8.9. Direction fields
- 9. Procedures
- 9.1. Programming structures
- 9.2. Simple examples
- 9.3. Procedures
- 9.4. Several ways to find the GCD
- 9.5. Further procedure examples
- 9.6. Fourier expansion
- 9.7. Common errors in procedures
- 10. Working with external files
- 10.1. Export and import a matrix
- 10.2. Using fprintf
- 10.3. Using readdata
- 10.4. Read data from an Excel file
- 10.5. Write data to an Excel worksheet
- 10.6. The Task Assistant Import
- 10.7. Copy and paste
- 11. Regression and statistics
- 11.1. Linear regression
- 11.2. Non-linear regression
- 11.3. Descriptive statistics
- 11.4. Sample or population?
- 11.5. Hypothesis testing
- 11.6. Combinations and permutations.