Maple : a primer /
Maple is a comprehensive symbolic mathematics application which is well suited for demonstrating physical science topics and solving associated problems. This book records the author's journey of discovery; he was familiar with SMath but not with Maple and set out to learn the more advanced app...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) :
Morgan & Claypool Publishers,
[2019]
|
Colección: | IOP (Series). Release 6.
IOP concise physics. |
Temas: | |
Acceso en línea: | Texto completo |
MARC
LEADER | 00000nam a2200000 4500 | ||
---|---|---|---|
001 | IOP_9781643274881 | ||
003 | IOP | ||
005 | 20190607215324.0 | ||
006 | m eo d | ||
007 | cr cn |||m|||a | ||
008 | 190605s2019 caua o 000 0 eng d | ||
020 | |a 9781643274881 |q ebook | ||
020 | |a 9781643274867 |q mobi | ||
020 | |z 9781643274850 |q print | ||
024 | 7 | |a 10.1088/2053-2571/ab0bb3 |2 doi | |
035 | |a (CaBNVSL)thg00979023 | ||
035 | |a (OCoLC)1104053563 | ||
040 | |a CaBNVSL |b eng |e rda |c CaBNVSL |d CaBNVSL | ||
050 | 4 | |a QC20.7.A4 |b L546 2019eb | |
072 | 7 | |a PHU |2 bicssc | |
072 | 7 | |a SCI040000 |2 bisacsh | |
082 | 0 | 4 | |a 530.150285 |2 23 |
100 | 1 | |a Liengme, Bernard V., |e author. | |
245 | 1 | 0 | |a Maple : |b a primer / |c Bernard V. Liengme. |
264 | 1 | |a San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : |b Morgan & Claypool Publishers, |c [2019] | |
264 | 2 | |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : |b IOP Publishing, |c [2019] | |
300 | |a 1 online resource (various pagings) : |b illustrations (some color). | ||
336 | |a text |2 rdacontent | ||
337 | |a electronic |2 isbdmedia | ||
338 | |a online resource |2 rdacarrier | ||
490 | 1 | |a [IOP release 6] | |
490 | 1 | |a IOP concise physics, |x 2053-2571 | |
500 | |a "Version: 20190501"--Title page verso. | ||
500 | |a "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso. | ||
505 | 0 | |a 1. Starting Maple -- 1.1. What is Maple? -- 1.2. The Maple interface -- 1.3. Entering simple expressions -- 1.4. The use of evalf[d](term) -- 1.5. Some handy algebraic commands -- 1.6. Context menus -- 1.7. Formatted output with printf -- 1.8. Data structures -- 1.9. Defining a function -- 1.10. Debugging a worksheet | |
505 | 8 | |a 2. Introductory examples -- 2.1. Ammonia -- 2.2. Water pump -- 2.3. Telescope resolution -- 2.4. Velocity of a bullet -- 2.5. Solve puzzle -- 2.6. Vertex form -- 2.7. Classic inclined plane problem -- 2.8. Baseball problem -- 2.9. Center of mass -- 2.10. Trough problem | |
505 | 8 | |a 3. Plotting with Maple -- 3.1. Starting with plot -- 3.2. Plot tools -- 3.3. Customizing with the context menu -- 3.4. Customizing a plot with parameters -- 3.5. A logarithmic plot -- 3.6. Using display for multifunction plots -- 3.7. Two plots side by side -- 3.8. Plotting a family of curves -- 3.9. Plotting digitalized data -- 3.10. Parametric plots -- 3.11. Using the coords = polar option -- 3.12. Implicit plots -- 3.13. Animated plots -- 3.14. Exploring with the Explore command -- 3.15. Plot with two axes -- 3.16. Three-dimensional plots | |
505 | 8 | |a 4. Solving equations and systems of equations -- 4.1. The solve command -- 4.2. Solving inequalities -- 4.3. Stress analysis -- 4.4. The assign command -- 4.5. The fsolve command -- 4.6. Systems of equations with fsolve -- 4.7. Finding complex roots -- 4.8. Restricting the root to a range -- 4.9. Example of using isolve -- 4.10. Off to Mars | |
505 | 8 | |a 5. Using units and physical constants -- 5.1. Some basic examples -- 5.2. Examples of usage -- 5.3. Using the Units command -- 5.4. Temperature conversions -- 5.5. Physical constants -- 5.6. Gravity constants G and g -- 5.7. Pump problem revisited | |
505 | 8 | |a 6. Linear algebra -- 6.1. Matrices and vectors -- 6.2. Simple matrix and vector math -- 6.3. Linear algebra -- 6.4. Solving a system of equations -- 6.5. Introduction to eigenvectors and eigenvalues -- 6.6. Notes on Maple vector commands -- 6.7. Some vector calculations | |
505 | 8 | |a 7. Introduction to calculus -- 7.1. Looking for the limit -- 7.2. Some differentiation examples -- 7.3. The D operator -- 7.4. Implicit differentiation -- 7.5. Examples of critical points -- 7.6. Some integration examples -- 7.7. Definite integrals -- 7.8. The assume command -- 7.9. Finding the area between two curves -- 7.10. Introduction to ODEs | |
505 | 8 | |a 8. Differential equations -- 8.1. Initial value problems (IVPs) -- 8.2. Entering ODEs and initial/boundary conditions -- 8.3. Boundary value problems (BVPs) -- 8.4. Family of solutions -- 8.5. Numerical integration -- 8.6. The simple pendulum -- 8.7. Coupled ODEs -- 8.8. Singular and general solutions -- 8.9. Direction fields | |
505 | 8 | |a 9. Procedures -- 9.1. Programming structures -- 9.2. Simple examples -- 9.3. Procedures -- 9.4. Several ways to find the GCD -- 9.5. Further procedure examples -- 9.6. Fourier expansion -- 9.7. Common errors in procedures | |
505 | 8 | |a 10. Working with external files -- 10.1. Export and import a matrix -- 10.2. Using fprintf -- 10.3. Using readdata -- 10.4. Read data from an Excel file -- 10.5. Write data to an Excel worksheet -- 10.6. The Task Assistant Import -- 10.7. Copy and paste | |
505 | 8 | |a 11. Regression and statistics -- 11.1. Linear regression -- 11.2. Non-linear regression -- 11.3. Descriptive statistics -- 11.4. Sample or population? -- 11.5. Hypothesis testing -- 11.6. Combinations and permutations. | |
520 | 3 | |a Maple is a comprehensive symbolic mathematics application which is well suited for demonstrating physical science topics and solving associated problems. This book records the author's journey of discovery; he was familiar with SMath but not with Maple and set out to learn the more advanced application. It leads readers through the basic Maple features with physical science worked examples, giving them a firm base on which to build if more complex features interest them. | |
521 | |a Students and professionals. | ||
530 | |a Also available in print. | ||
538 | |a Mode of access: World Wide Web. | ||
538 | |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. | ||
545 | |a Bernard V. Liengme is a retired Professor of Chemistry and Lecturer in Information Systems of St. Francis Xavier University in Nova Scotia, Canada where he taught for over 36 years. He is the author of A Guide to Microsoft Excel® for Business and Management (two editions), and A Guide to Microsoft Excel® for Scientists and Engineers (six editions). The latter has been adopted by various engineering schools worldwide and both books have been translated into a number of languages. More recently published is Modelling Physics with Microsoft Excel® and SMath for Physics: A primer, both IOP ebooks. Bernard has been awarded the Microsoft Most Valued Professional award in Excel® in each of the last eight years. | ||
588 | 0 | |a Title from PDF title page (viewed on June 5, 2019). | |
630 | 0 | 0 | |a Maple (Computer file) |
650 | 0 | |a Mathematical physics |x Data processing. | |
650 | 7 | |a Mathematical physics. |2 bicssc | |
650 | 7 | |a SCIENCE / Physics / Mathematical & Computational. |2 bisacsh | |
710 | 2 | |a Morgan & Claypool Publishers, |e publisher. | |
710 | 2 | |a Institute of Physics (Great Britain), |e publisher. | |
776 | 0 | 8 | |i Print version: |z 9781643274850 |
830 | 0 | |a IOP (Series). |p Release 6. | |
830 | 0 | |a IOP concise physics. | |
856 | 4 | 0 | |u https://iopscience.uam.elogim.com/book/978-1-64327-488-1 |z Texto completo |