Cargando…

Nonlinear dynamics : a hands-on introductory survey /

This book uses a hands-on approach to nonlinear dynamics using commonly available software, including the free dynamical systems software Xppaut, Matlab (or its free cousin, Octave) and the Maple symbolic algebra system. Detailed instructions for various common procedures, including bifurcation anal...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Roussel, Marc R., 1966- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2019]
Colección:IOP (Series). Release 6.
IOP concise physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 4500
001 IOP_9781643274645
003 IOP
005 20190509172539.0
006 m eo d
007 cr cn |||m|||a
008 190506s2019 caua ob 000 0 eng d
020 |a 9781643274645  |q ebook 
020 |a 9781643274621  |q mobi 
020 |z 9781643274614  |q print 
024 7 |a 10.1088/2053-2571/ab0281  |2 doi 
035 |a (CaBNVSL)thg00978856 
035 |a (OCoLC)1100643355 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QA845  |b .R686 2019eb 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 531/.11  |2 23 
100 1 |a Roussel, Marc R.,  |d 1966-  |e author. 
245 1 0 |a Nonlinear dynamics :  |b a hands-on introductory survey /  |c Marc R. Roussel. 
264 1 |a San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) :  |b Morgan & Claypool Publishers,  |c [2019] 
264 2 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2019] 
300 |a 1 online resource (various pagings) :  |b illustrations (some color). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release 6] 
490 1 |a IOP concise physics,  |x 2053-2571 
500 |a "Version: 20190401"--Title page verso. 
500 |a "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Introduction -- 1.1. What is a dynamical system? -- 1.2. The law of mass action -- 1.3. Software 
505 8 |a 2. Phase-plane analysis -- 2.1. Introduction -- 2.2. The Lindemann mechanism -- 2.3. Dimensionless equations -- 2.4. The vector field -- 2.5. Exercises 
505 8 |a 3. Stability analysis for ODEs -- 3.1. Linear stability analysis -- 3.2. Lyapunov functions -- 3.3. Exercises 
505 8 |a 4. Introduction to bifurcations -- 4.1. Introduction -- 4.2. Saddle-node bifurcation -- 4.3. Transcritical bifurcation -- 4.4. Andronov-Hopf bifurcations -- 4.5. Dynamics in three dimensions -- 4.6. Exercises 
505 8 |a 5. Bifurcation analysis with AUTO -- 5.1. Bifurcation diagram of a gene expression model -- 5.2. The phase diagram of Griffith's model -- 5.3. Bifurcation diagram of the autocatalator -- 5.4. Getting out of trouble in AUTO -- 5.5. Exercises 
505 8 |a 6. Invariant manifolds -- 6.1. Introduction -- 6.2. Flow dynamics away from the equilibrium point -- 6.3. Special eigenspaces of equilibrium points -- 6.4. From eigenspaces to invariant manifolds -- 6.5. Applications of invariant manifolds -- 6.6. Exercises 
505 8 |a 7. Singular perturbation theory -- 7.1. Introduction -- 7.2. Scaling and balancing -- 7.3. The outer solution -- 7.4. The inner solution -- 7.5. Matching the inner and outer solutions -- 7.6. Geometric singular perturbation theory and the outer solution -- 7.7. Exercises 
505 8 |a 8. Hamiltonian systems -- 8.1. Introduction -- 8.2. Integrable systems -- 8.3. Numerical integration -- 8.4. Exercises 
505 8 |a 9. Nonautonomous systems -- 9.1. Introduction -- 9.2. A driven Brusselator -- 9.3. Automated bifurcation analysis -- 9.4. Exercises 
505 8 |a 10. Maps and differential equations -- 10.1. Numerical methods as maps -- 10.2. Solution maps of differential equations -- 10.3. Poincaré maps of systems with periodic nonautonomous terms -- 10.4. Poincaré sections and maps in autonomous systems -- 10.5. Next-amplitude maps -- 10.6. Concluding comments -- 10.7. Exercises 
505 8 |a 11. Maps : stability and bifurcation analysis -- 11.1. Linear stability analysis of fixed points -- 11.2. Stability of periodic orbits -- 11.3. Lyapunov exponents -- 11.4. Exercises 
505 8 |a 12. Delay-differential equations -- 12.1. Introduction to infinite-dimensional dynamical systems -- 12.2. Introduction to delay-differential equations -- 12.3. Linearized stability analysis -- 12.4. Exercises 
505 8 |a 13. Reaction-diffusion equations -- 13.1. Introduction -- 13.2. Stability analysis of reaction-diffusion equations -- 13.3. Exercises -- Appendix A. Software installation. 
520 3 |a This book uses a hands-on approach to nonlinear dynamics using commonly available software, including the free dynamical systems software Xppaut, Matlab (or its free cousin, Octave) and the Maple symbolic algebra system. Detailed instructions for various common procedures, including bifurcation analysis using the version of AUTO embedded in Xppaut, are provided. This book also provides a survey that can be taught in a single academic term covering a greater variety of dynamical systems (discrete versus continuous time, finite versus infinite-dimensional, dissipative versus conservative) than is normally seen in introductory texts. Numerical computation and linear stability analysis are used as unifying themes throughout the book. Despite the emphasis on computer calculations, theory is not neglected, and fundamental concepts from the field of nonlinear dynamics such as solution maps and invariant manifolds are presented. 
521 |a Senior undergraduates or beginning graduate students in the physical or mathematical sciences. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Marc Roussel earned a Bachelor's degree in chemical physics from Queen's University in 1988. He then went on to graduate work in the Chemical Physics Theory Group at the University of Toronto under the supervision of Simon J. Fraser, earning an MSc in 1990 and a PhD in 1994. In 1995, Marc was hired as an Assistant Professor by the Department of Chemistry at the University of Lethbridge. He was promoted to Associate Professor in 2000, and to Professor in 2005. 
588 0 |a Title from PDF title page (viewed on May 6, 2019). 
650 0 |a Dynamics. 
650 0 |a Nonlinear theories. 
650 7 |a Mathematical physics.  |2 bicssc 
650 7 |a SCIENCE / Physics / Mathematical & Computational.  |2 bisacsh 
710 2 |a Morgan & Claypool Publishers,  |e publisher. 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9781643274614 
830 0 |a IOP (Series).  |p Release 6. 
830 0 |a IOP concise physics. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-1-64327-464-5  |z Texto completo