Cargando…

Quantised vortices : a handbook of topological excitations /

Vortices comprising swirling motion of matter are observable in classical systems at all scales ranging from atomic size to the scale of galaxies. In quantum mechanical systems, such vortices are robust entities whose behaviours are governed by the strict rules of topology. The physics of quantum vo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Simula, Tapio (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2019]
Colección:IOP (Series). Release 6.
IOP concise physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • part I. Vortices in Flatland. 1. Vortices
  • 1.1. Space-time symmetries
  • 1.2. Quantum liquids
  • 1.3. Vorticity in classical fluids
  • 1.4. Vorticity in quantum liquids
  • 2. Quasiparticle picture
  • 2.1. Emergence of quasiparticles
  • 2.2. Boson commutation relations
  • 2.3. Fermion anticommutation relations
  • 2.4. Majorana relations
  • 2.5. Anyon quasiparticles
  • 2.6. Non-abelian anyon quasiparticles
  • 2.7. Bogoliubov-de Gennes equations
  • 2.8. Time-reversal symmetry
  • 2.9. Particle-hole symmetry
  • 2.10. Chiral symmetry
  • 2.11. Phonon spectrum
  • 2.12. Landau critical velocity
  • 2.13. Roton-maxon spectrum
  • 2.14. Edge modes
  • 2.15. Dipole, breathing, quadrupole and scissors modes
  • 2.16. Kelvin mode vortex waves
  • 2.17. Tkachenko mode vortex waves
  • 2.18. Caroli-de Gennes-Matricon modes
  • 2.19. Nambu-Goldstone zero mode
  • 2.20. Majorana zero mode
  • 2.21. Magnon spin waves
  • 3. Cold atoms
  • 3.1. Scalar Bose-Einstein condensates
  • 3.2. Bose zero-temperature energy functional
  • 3.3. Thomas-Fermi relations
  • 3.4. Healing length
  • 3.5. Thermodynamic relations
  • 3.6. Quantum hydrodynamic equations
  • 3.7. Two-component Bose-Einstein condensates
  • 3.8. Spin-1 Bose-Einstein condensates
  • 3.9. Spin-2 Bose-Einstein condensates
  • 3.10. High-spin Bose-Einstein condensates
  • 3.11. Representations of spinor Bose-Einstein condensates
  • 3.12. Exotic interactions
  • 3.13. Bardeen-Cooper-Schrieffer mean-field theory
  • 3.14. Ultracold Fermi gases
  • 3.15. Dirac-Bogoliubov-de Gennes systems
  • 3.16. Gapless, massless, linear spectra
  • 3.17. Gapped, massive, quadratic spectra
  • 4. Topological invariants and quantities
  • 4.1. Topology and ordered structures
  • 4.2. A game of lines and loops
  • 4.3. Maps and order parameters
  • 4.4. Homotopy classification of defects
  • 4.5. Burgers vector
  • 4.6. Gauss-Bonnet theorem
  • 4.7. Winding number
  • 4.8. Berry phase, curvature, and connection
  • 4.9. Chern number
  • 4.10. Linking number, writhe and twist
  • 4.11. Helicity
  • 4.12. Enstrophy
  • 4.13. Kauffman bracket polynomial
  • 4.14. Jones polynomial
  • 5. Topological excitations
  • 5.1. Topological defects
  • 5.2. Soliton
  • 5.3. Bright soliton
  • 5.4. Grey and dark soliton
  • 5.5. Solitonic vortex
  • 5.6. Plain vortex
  • 5.7. Polynomial vortex
  • 5.8. Coherence vortex
  • 5.9. Fractional vortex
  • 5.10. Baby skyrmion
  • 5.11. Monopole
  • 5.12. Fluxon, chargeon, and dyon
  • 5.13. Alice vortex and Cheshire charge
  • 6. Structure of a plain vortex
  • 6.1. Vortex uncertainty principle
  • 6.2. Kelvon
  • 6.3. Circulation quantum
  • 6.4. Vortex energy
  • 6.5. Thermodynamic stability
  • 6.6. Spectral, energetic stability
  • 6.7. Dynamical Lyapunov stability
  • 6.8. Inertial vortex mass
  • 6.9. Gravitational vortex mass
  • 6.10. Kelvon-based vortex mass
  • 6.11. Hydrodynamic induced vortex mass component
  • 6.12. Relativistic vortex mass component
  • 6.13. Baym-Chandler vortex mass
  • 6.14. Kopnin vortex mass
  • 7. Vortex dynamics
  • 7.1. Adiabatic vortex dynamics
  • 7.2. Vortex force and velocity
  • 7.3. Magnus effect and mutual induction
  • 7.4. Vortex pair creation and annihilation
  • 7.5. Onsager point vortex model
  • 7.6. Vortex-particle duality
  • 7.7. Point vortex model with cylindrical boundary
  • 7.8. Point vortex models with square boundaries
  • 7.9. Point vortex models in general domains
  • 7.10. Vortex classification algorithm
  • 7.11. Vortex temperature
  • 7.12. Winding number scaling laws
  • 8. Vortex production in Bose-Einstein condensates
  • 8.1. Coherent coupling of internal states
  • 8.2. Laguerre-Gauss laser modes
  • 8.3. Topological angular momentum conversion
  • 8.4. Rotating bucket
  • 8.5. Rotating thermal cloud
  • 8.6. Stirring
  • 8.7. Shaking bucket
  • 8.8. Snaking instability
  • 8.9. Many-wave interference
  • 8.10. Vortex-antivortex honeycomb lattices
  • 8.11. Caustics and diffraction catastrophes
  • 8.12. Vortex quasicrystals
  • 8.13. Vortex phasons
  • 8.14. Vortex Moiré superlattices
  • 8.15. Synthetic gauge fields
  • 8.16. Optical flux lattices
  • 8.17. Filtered speckle fields
  • 8.18. Kibble-Zurek mechanism and quenches
  • 8.19. Berezinskii-Kosterlitz-Thouless mechanism
  • 9. Topological quantum computation
  • 9.1. Non-abelian anyons
  • 9.2. Topological qubits
  • 9.3. Quantum dimension
  • 9.4. Majorana Ising anyon model
  • 9.5. Fibonacci anyon model
  • 9.6. Model k anyons
  • 9.7. Non-abelian vortex anyons
  • 9.8. Annihilation, pass-through and rungihilation
  • 9.9. Non-abelian vortex anyon models
  • 9.10. Vortex anyon creation, pinning, braiding, and fusion
  • 9.11. From quantum circuits to anyon braiding
  • 9.12. Evaluation of space-time knot invariants
  • 10. Two-dimensional quantum turbulence
  • 10.1. Regular and chaotic few-vortex dynamics
  • 10.2. Inverse energy and direct enstrophy cascades
  • 10.3. Vortex near-field spectrum
  • 10.4. Vortex far-field spectrum
  • 10.5. Vortex dipole spectrum
  • 10.6. Kolmogorov-Obukhov spectrum
  • 10.7. Onsager vortex spectrum
  • 10.8. Spin turbulence spectrum
  • 10.9. Helmholtz decomposition
  • 10.10. Enstrophy conservation and non-conservation
  • 10.11. Evaporative heating of vortices
  • 10.12. Point vortex model of turbulence
  • 10.13. Non-abelian two-dimensional quantum turbulence
  • 10.14. Superfluid Reynolds number
  • 10.15. Eddy turnover time
  • 10.16. Anomalous hydrodynamics of vortices
  • 10.17. Negative absolute temperature
  • 10.18. Negative absolute vortex temperature
  • 10.19. Non-thermal fixed point
  • 10.20. Dynamical phase transitions
  • 10.21. Condensation of Onsager vortices
  • 11. Vortex states of matter in Flatland
  • 11.1. BCS superconductivity
  • 11.2. Meissner effect
  • 11.3. Type-II superconductors
  • 11.4. Abrikosov vortex lattice
  • 11.5. Vortex pinning and creep motion
  • 11.6. Vortex matter in rotating superfluids
  • 11.7. Vortex nucleation and Hess-Fairbank effect
  • 11.8. Vortex lattices in neutral superfluids
  • 11.9. Feynman rule
  • 11.10. Vortex lattice melting
  • 11.11. Two-dimensional vortex Coulomb gas
  • 11.12. Two-dimensional Coulomb gas : quantum Hall effects
  • 11.13. Two-dimensional Coulomb gas : Hauge-Hemmer transition
  • 11.14. Two-dimensional Coulomb gas : Berezinskii-Kosterlitz-Thouless transition
  • 11.15. Two-dimensional Coulomb gas : supercondensation transition
  • 11.16. Two-dimensional Coulomb gas : Einstein-Bose condensation transition
  • 12. Superfluid universe
  • 12.1. Vacuum
  • 12.2. Speed of light
  • 12.3. Photon
  • 12.4. Particles and antiparticles
  • 12.5. Positronium
  • 12.6. Pair creation and annihilation
  • 12.7. Photon emission and absorption
  • 12.8. Charge
  • 12.9. Spin
  • 12.10. Dipole moment
  • 12.11. Electrodynamics
  • 12.12. Non-abelian fractional charge particles
  • 12.13. Quantum chromodynamics
  • 12.14. Gravitation and black holes
  • 12.15. Cosmic inflation.