Keplerian ellipses : a student guide to the physics of the gravitational two-body problem /
Kepler's three laws of planetary motion were a stunning development in human intellectual history. This second edition is a concise, self-contained treatment of Kepler/Newton planetary orbits at the level of an advanced undergraduate physics student. New to this edition are elements such as a d...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2023]
|
Edición: | Second edition. |
Colección: | IOP (Series). Release 22.
AAS-IOP astronomy. 2022 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Polar coordinates--a review
- 1.1. Fundamental definitions
- 1.2. Polar coordinate unit vectors
- 1.3. Time derivatives of polar coordinate unit vectors
- 1.4. Some useful integrals and expansions
- 2. Dynamical quantities in polar coordinates
- 2.1. Position, velocity, acceleration, angular momentum, torque, and energy
- 2.2. Uniform circular motion : a specific case of the acceleration formula
- 3. Central forces
- 3.1. The center of mass and the reduced mass
- 3.2. Central force dynamics : the potential
- 3.3. Why an inverse-square law? The sesquialterate proportion
- 3.4. Central force dynamics : conservation of angular momentum
- 3.5. Central force dynamics : integrals of the motion
- 3.6. Central force dynamics : acceleration in terms of the azimuthal angle
- 3.7. Newton's shell-point equivalency theorem
- 4. The ellipse
- 4.1. The ellipse in polar and Cartesian coordinates
- 4.2. Area of an ellipse
- 4.3. Area as a vector cross-product, and Kepler's second law
- 4.4. How did Kepler plot the orbits?
- 4.5. The optical theorem for ellipses
- 5. Elliptical orbits and the inverse-square law : geometry meets physics
- 5.1. Proof by assuming an elliptical orbit : angular momentum
- 5.2. Velocity, the vis-viva equation, and energy
- 5.3. Proof of elliptical orbits by direct integration
- 5.4. Kepler's third law
- 5.5. The time-angle equation
- 5.6. Example : an Earth-orbiting spy satellite
- 5.7. The Laplace-Runge-Lenz vector
- 5.8. Kepler's third law for non-inverse-square central forces
- 5.9. The effective potential
- 5.10. A taste of perturbation theory
- 5.11. Escape velocity
- 6. Kepler's equation : anomalies true, eccentric, and mean
- 7. Transfer and rendezvous orbits
- 7.1. The Hohmann ellipse transfer orbit
- 7.2. The Lambert problem
- 7.3. The ham sandwich throw
- 8. Some sundry results
- 8.1. Average distance of a planet from the Sun
- 8.2. Time-average orbital speed
- 8.3. Determining initial launch conditions
- 8.4. The l2 Lagrange point and the James Webb Space Telescope
- 8.5. An approximate treatment of Mercury's perihelion advance
- 8.6. A brief lesson in unit conversion
- 8.7. Orientation of Earth's orbit
- 8.8. Motion of the Sun
- 8.9. Gravitational scattering
- 8.10. Some final words
- Appendix A. Spherical coordinates
- Appendix B. Circular-orbit perturbation theory for non-inverse-square central forces
- Appendix C. Further reading
- Appendix D. Summary of useful formulae
- Appendix E. Glossary of symbols.