Fundamentals of quantum entanglement /
Quantum entanglement (QE) has rapidly become a subject of great interest in academia, industry, and government research institutions. This book builds on the first edition of Fundamentals of Quantum Entanglement to provide a transparent and more insightful introduction for graduate students, scienti...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2022]
|
Edición: | Second edition. |
Colección: | IOP (Series). Release 22.
IOP series in coherent sources, quantum fundamentals, and applications. IOP ebooks. 2022 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction
- 1.1. Introduction
- 1.2. Foundations of quantum mechanics
- 1.3. Ward's observations
- 1.4. History of quantum entanglement
- 1.5. The field of quantum entanglement
- 1.6. Fundamentals of quantum entanglement
- 1.7. Intent
- 2. Dirac's physics
- 2.1. Introduction
- 2.2. Dirac's pair theory
- 2.3. Dirac's notation
- 2.4. Dirac's notation in N-slit interferometers
- 2.5. Expanded series of N-slit quantum interference probabilities
- 2.6. The interferometric probability in 2D and 3D
- 2.7. Semi-coherent interference
- 2.8. From quantum probabilities to measurable intensities
- 2.9. Interferometric calculations and quantum coherence
- 2.10. Dirac's identities
- 3. The Einstein-Podolsky-Rosen (EPR) paper
- 3.1. Introduction
- 3.2. EPR's doubts on quantum mechanics
- 3.3. Transparent resolution of the EPR 'paradox'
- 4. The Schrödinger papers
- 4.1. Introduction
- 4.2. The first Schrödinger paper
- 4.3. The second Schrödinger paper
- 5. Wheeler's paper
- 5.1. Introduction
- 5.2. Wheeler's paper significance to quantum theory
- 5.3. Wheeler's paper significance to quantum experiments
- 5.4. A theoretical opportunity
- 6. The probability amplitude for quantum entanglement
- 6.1. Introduction
- 6.2. The Pryce-Ward paper
- 6.3. Ward's doctoral thesis
- 6.4. Summary
- 7. The quantum entanglement experiment
- 7.1. Introduction
- 7.2. The quantum entanglement experiment
- 7.3. Historical notes
- 8. The annihilation quantum entanglement experiments
- 8.1. Introduction
- 8.2. The first three quantum entanglement experiments
- 8.3. Further significance of the annihilation experiments
- 9. The Bohm and Aharonov paper
- 9.1. Introduction
- 9.2. Significance to the development of quantum entanglement research
- 9.3. Philosophy and physics
- 10. Bell's theorem
- 10.1. Introduction
- 10.2. von Neumann's
- 10.3. Bell's theorem or Bell's inequalities
- 10.4. Example
- 10.5. An additional perspective on Bell's theorem
- 10.6. More philosophy and physics
- 11. Feynman's Hamiltonians
- 11.1. Introduction
- 11.2. Probability amplitudes via Hamiltonians à la Feynman
- 11.3. Arrival to quantum entanglement probability amplitudes
- 11.4. Hyperfine splitting
- 11.5. Discussion
- 12. The second Wu quantum entanglement experiment
- 12.1. Introduction
- 12.2. Salient features
- 12.3. Bell's theorem and hidden variables
- 13. The hidden variable theory experiments
- 13.1. Introduction
- 13.2. Testing for local hidden variable theories
- 13.3. Early optical experiment
- 13.4. Observations and discussion
- 14. The optical quantum entanglement experiments
- 14.1. Introduction
- 14.2. The Aspect experiments
- 14.3. Observations and discussion
- 15. The quantum entanglement probability amplitude 1947-1992
- 15.1. Introduction
- 15.2. The quantum entanglement probability amplitude 1947-1992
- 15.3. Observations and discussion
- 16. The GHZ probability amplitudes
- 16.1. Introduction
- 16.2. The GHZ probability amplitudes
- 16.3. Observations and discussion
- 17. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 2
- 17.1. Introduction
- 17.2. The meaning of the Dirac-Feynman probability amplitude
- 17.3. The derivation of the quantum entanglement probability amplitude
- 17.4. Identical states of polarization
- 17.5. Beyond single quanta-pair quantum entanglement
- 17.6. Discussion
- 18. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 21, 22, 23, 24 ... 2r
- 18.1. Introduction
- 18.2. The quantum entanglement probability amplitude for n = N = 4
- 18.3. The quantum entanglement probability amplitude for n = N = 8
- 18.4. The quantum entanglement probability amplitude for n = N = 16
- 18.5. The quantum entanglement probability amplitude for n = N = 21, 22, 23, 24, ... 2r
- 18.6. Discussion
- 19. The interferometric derivation of the quantum entanglement probability amplitudes for n = N = 3, 6
- 19.1. Introduction
- 19.2. The quantum entanglement probability amplitude for n = N = 3
- 19.3. The quantum entanglement probability amplitude for n = N = 6
- 19.4. Discussion
- 20. Quantum entanglement at n = 1 and N = 2
- 20.1. Introduction
- 20.2. Reversibility : from entanglement to interference
- 20.3. Schematics
- 20.4. Experimental and theoretical perspectives
- 20.5. Interference for N slits and n = 1
- 21. Quantum entanglement probability amplitudes applied to Bell's theorem
- 21.1. Introduction
- 21.2. Probability amplitudes
- 21.3. Quantum polarization
- 21.4. Quantum probabilities and Bell's theorem
- 21.5. Application to Bell's theorem
- 21.6. All-quantum approach
- 21.7. Discussion
- 22. Quantum entanglement via matrix notation
- 22.1. Introduction
- 22.2. The probability amplitudes of quantum entanglement
- 22.3. Dirac's ket vectors and Pauli matrices
- 22.4. Quantum entanglement in Pauli matrix notation
- 22.5. Quantum entanglement and the Hadamard gate
- 22.6. Complete set of matrices derived from the probability amplitudes of quantum entanglement
- 22.7. Polarization rotators for quantum entanglement
- 22.8. Quantum mathematics with polarization rotators
- 22.9. Quantum mathematics with the Hadamard gate
- 22.10. Interconnectivity in quantum mechanics
- 23. Cryptography via quantum entanglement
- 23.1. Introduction
- 23.2. Measurement protocol based on Bell's theorem
- 23.3. All-quantum measurement protocol
- 24. Quantum entanglement and teleportation
- 24.1. Introduction
- 24.2. The mechanics of teleportation
- 24.3. Technology
- 25. Quantum entanglement and quantum computing
- 25.1. Introduction
- 25.2. Entropy
- 25.3. Qbits
- 25.4. Quantum entanglement and Pauli matrices
- 25.5. Pauli matrices and quantum entanglement
- 25.6. Quantum gates
- 25.7. The Hadamard matrix and quantum entanglement
- 25.8. Multiple entangled states
- 25.9. Technology
- 26. Space-to-space and space-to-Earth communications via quantum entanglement
- 26.1. Introduction
- 26.2. Space-to-space configurations
- 26.3. Experiments
- 26.4. Further horizons
- 27. Space-to-space quantum interferometric communications
- 27.1. Introduction
- 27.2. The generalized N-slit quantum interference equations
- 27.3. The generation and transmission of interferometric characters
- 27.4. The inherent quantum security mechanism
- 27.5. Discussion
- 28. Quanta pair sources for quantum entanglement experiments
- 28.1. Introduction
- 28.2. Positron-electron annihilation
- 28.3. Atomic Ca emission
- 28.4. Type I spontaneous parametric down-conversion
- 28.5. Type II spontaneous parametric down-conversion
- 28.6. Quantum description of parametric down-conversion
- 28.7. Alternative quantum pair sources
- 28.8. Further horizons
- 29. Quantum interferometric principles
- 29.1. Introduction
- 29.2. Fundamental principles of quantum mechanics
- 29.3. Nonlocality of the photon
- 29.4. Indistinguishability and Dirac's identities
- 29.5. Quantum measurements
- 29.6. Quantum entanglement at the foundations of quantum mechanics
- 29.7. On the origin of the Dirac-Feynman principle
- 29.8. Discussion
- 30. On the interpretation of quantum mechanics
- 30.1. Introduction
- 30.2. Philosophical aspects of quantum entanglement
- 30.3. Quantum critical
- 30.4. Conceptual 'problems' in quantum mechanics
- 30.5. Quantum luminaries
- 30.6. The pragmatic perspective
- 30.7. The Dirac-Feynman-Lamb doctrine
- 30.8. The all-important probability amplitude
- 30.9. The quantumness derived from the nonlocality of the photon
- 30.10. The best interpretation of quantum mechanics
- 30.11. Discussion
- Apppendix A. Revisiting the Pryce-Ward probability amplitude for quantum entanglement
- Apppendix B. Classical and quantum interference
- Apppendix C. Interferometers and their probability amplitudes
- Apppendix D. Polarization rotators for quantum entanglement
- Apppendix E. Vectors, vector products, matrices, and tensors for quantum entanglement
- Apppendix F. Trigonometric identities
- Apppendix G. More on quantum notation
- Apppendix H. From quantum principles to classical optics
- Apppendix I. Introduction to complex conjugates and Hamilton's quaternions
- Apppendix J. Some open ended quantum questions.