Cargando…

Light scattering and absorption by particles : the Q-space approach /

This book provides a thorough overview of how particles of any size or shape scatter and absorb light.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sorensen, Christopher M. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]
Colección:IOP (Series). Release 22.
IOP ebooks. 2022 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Waves
  • 1.1. Wave concepts
  • 1.2. Energy transport
  • 1.3. Complex notation
  • 1.4. Fourier analysis
  • 1.5. Diffraction
  • 1.6. Foundations of scattering
  • 2. Introduction to scattering and absorption
  • 2.1. The total cross section
  • 2.2. Angles and solid angles
  • 2.3. The differential scattering cross section
  • 2.4. Extinction, albedo and the efficiencies
  • 2.5. Attenuation by an ensemble of particles
  • 2.6. Multiple scattering
  • 3. Polarization
  • 3.1. Polarized light
  • 3.2. Polarization by an oscillating electric dipole
  • 3.3. The Stokes vector and the Mueller matrix
  • 3.4. The scattering matrix
  • 3.5. Polarization upon scattering
  • 3.6. Microphysical description for the scattered light polarization for spheres
  • 4. The structure factor
  • 4.1. A system of scatterers
  • 4.2. The scattering wave vector
  • 4.3. The structure factor
  • 4.4. The structure factor as a Fourier transform squared of the density distribution function
  • 4.5. The structure factor as a Fourier transform of the density autocorrelation function
  • 4.6. The density autocorrelation function
  • 4.7. And another form for the structure factor
  • 4.8. The Guinier regime
  • 4.9. The structure factor of the sphere
  • 4.10. The structure factor as diffraction : generalization to arbitrary dimension
  • 5. The scaling approach to the structure factor
  • 5.1. The scaling approach concepts
  • 5.2. The scaling approach rules
  • 5.3. The scaling approach applied to various shapes
  • 5.4. The scaling approach for single particles
  • 5.5. The scaling approach for ensembles of particles
  • 5.6. Connections to other formulations
  • 5.7. Assessment
  • 6. Rayleigh scattering
  • 6.1. Dimensional analysis
  • 6.2. The Rayleigh differential scattering cross section for a sphere : electromagnetic theory
  • 6.3. The total Rayleigh cross section
  • 6.4. Consequences of Rayleigh scattering
  • 6.5. Rayleigh absorption
  • 6.6. Rayleigh extinction
  • 6.7. Rayleigh albedo
  • 6.8. The Rayleigh ratio
  • 6.9. Limits to the Rayleigh regime
  • 6.10. Epilogue
  • 7. Light scattering and absorption by spherical particles
  • 7.1. The differential scattering cross section
  • 7.2. The spherical particle absorption cross section
  • 7.3. Effects of absorption on scattering
  • 7.4. Efficiencies
  • 7.5. The single scattering albedo
  • 8. Q-space analysis of light scattering by spherical particles
  • 8.1. Motivation for Q-space analysis
  • 8.2. Q-space analysis of scattering by an arbitrary sphere
  • 8.3. The partial scattering cross section
  • 8.4. The extinction paradox
  • 9. Light scattering and absorption by fractal aggregates
  • 9.1. Fractals
  • 9.2. Fractal aggregate structure
  • 9.3. Fractal aggregate structure factor
  • 9.4. Light scattering and absorption by fractal aggregates
  • 9.5. Superaggregates
  • 10. Light scattering and absorption by particles of any shape
  • 10.1. Experimental data
  • 10.2. The general Rayleigh method for a particle of arbitrary shape
  • 10.3. Theoretical calculations of scattering by various shapes
  • 10.4. Summary and conclusions
  • Appendix A. The Dirac delta function
  • Appendix B. Aggregation
  • Appendix C. A Theory for DLCA fractal aggregate morphology
  • Appendix D. The radius of gyration.