Light scattering and absorption by particles : the Q-space approach /
This book provides a thorough overview of how particles of any size or shape scatter and absorb light.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2022]
|
Colección: | IOP (Series). Release 22.
IOP ebooks. 2022 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Waves
- 1.1. Wave concepts
- 1.2. Energy transport
- 1.3. Complex notation
- 1.4. Fourier analysis
- 1.5. Diffraction
- 1.6. Foundations of scattering
- 2. Introduction to scattering and absorption
- 2.1. The total cross section
- 2.2. Angles and solid angles
- 2.3. The differential scattering cross section
- 2.4. Extinction, albedo and the efficiencies
- 2.5. Attenuation by an ensemble of particles
- 2.6. Multiple scattering
- 3. Polarization
- 3.1. Polarized light
- 3.2. Polarization by an oscillating electric dipole
- 3.3. The Stokes vector and the Mueller matrix
- 3.4. The scattering matrix
- 3.5. Polarization upon scattering
- 3.6. Microphysical description for the scattered light polarization for spheres
- 4. The structure factor
- 4.1. A system of scatterers
- 4.2. The scattering wave vector
- 4.3. The structure factor
- 4.4. The structure factor as a Fourier transform squared of the density distribution function
- 4.5. The structure factor as a Fourier transform of the density autocorrelation function
- 4.6. The density autocorrelation function
- 4.7. And another form for the structure factor
- 4.8. The Guinier regime
- 4.9. The structure factor of the sphere
- 4.10. The structure factor as diffraction : generalization to arbitrary dimension
- 5. The scaling approach to the structure factor
- 5.1. The scaling approach concepts
- 5.2. The scaling approach rules
- 5.3. The scaling approach applied to various shapes
- 5.4. The scaling approach for single particles
- 5.5. The scaling approach for ensembles of particles
- 5.6. Connections to other formulations
- 5.7. Assessment
- 6. Rayleigh scattering
- 6.1. Dimensional analysis
- 6.2. The Rayleigh differential scattering cross section for a sphere : electromagnetic theory
- 6.3. The total Rayleigh cross section
- 6.4. Consequences of Rayleigh scattering
- 6.5. Rayleigh absorption
- 6.6. Rayleigh extinction
- 6.7. Rayleigh albedo
- 6.8. The Rayleigh ratio
- 6.9. Limits to the Rayleigh regime
- 6.10. Epilogue
- 7. Light scattering and absorption by spherical particles
- 7.1. The differential scattering cross section
- 7.2. The spherical particle absorption cross section
- 7.3. Effects of absorption on scattering
- 7.4. Efficiencies
- 7.5. The single scattering albedo
- 8. Q-space analysis of light scattering by spherical particles
- 8.1. Motivation for Q-space analysis
- 8.2. Q-space analysis of scattering by an arbitrary sphere
- 8.3. The partial scattering cross section
- 8.4. The extinction paradox
- 9. Light scattering and absorption by fractal aggregates
- 9.1. Fractals
- 9.2. Fractal aggregate structure
- 9.3. Fractal aggregate structure factor
- 9.4. Light scattering and absorption by fractal aggregates
- 9.5. Superaggregates
- 10. Light scattering and absorption by particles of any shape
- 10.1. Experimental data
- 10.2. The general Rayleigh method for a particle of arbitrary shape
- 10.3. Theoretical calculations of scattering by various shapes
- 10.4. Summary and conclusions
- Appendix A. The Dirac delta function
- Appendix B. Aggregation
- Appendix C. A Theory for DLCA fractal aggregate morphology
- Appendix D. The radius of gyration.