Cargando…

Optical path theory : fundamentals to freeform adaptive optics /

This book is mostly based in an equation that was recently published. The equation is the general formula for adaptive optics mirrors, which was published in January 2021--General mirror formula for adaptive optics, Applied Optics 60(2).

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: González-Acuäna, Rafael G. (Autor), Chaparro-Romo, Héctor A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]
Colección:IOP (Series). Release 22.
IOP series in emerging technologies in optics and photonics.
IOP ebooks. 2022 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • part I. Introduction to optical path theory. 1. The path of light
  • 1.1. Purpose and introduction to this treatise
  • 1.2. The optical path and Fermat's principle
  • 1.3. The law of reflection
  • 1.4. The law of refraction
  • 1.5. The vector form of Snell's law
  • 1.6. The wavefront and the Malus-Dupin theorem
  • 1.7. Optical path difference and phase difference
  • 1.8. Stigmatism and aberrated wavefronts
  • 1.9. Adaptive optics
  • 1.10. Optical testing
  • 1.11. End notes
  • part II. Aspheric optical systems and the path of light. 2. General catoptric stigmatic surfaces
  • 2.1. The crux of adaptive optics
  • 2.2. General equation for deformable mirrors for images at a finite distance
  • 2.3. The eikonal, the wavefront, and ray tracing
  • 2.4. Mathematica code
  • 2.5. Examples
  • 2.6. The general equation for deformable mirrors for images at infinity
  • 2.7. The eikonal, the wavefront, and ray tracing
  • 2.8. Mathematica code
  • 2.9. Examples
  • 2.10. End notes
  • 3. General dioptric stigmatic surfaces
  • 3.1. A more general solution than Cartesian ovals
  • 3.2. General equation for stigmatic surfaces for images at finite distances
  • 3.3. The wavefronts of images at finite distances
  • 3.4. Mathematica code
  • 3.5. Examples
  • 3.6. The general equation for stigmatic surfaces for images at infinity
  • 3.7. The wavefronts of images at infinity
  • 3.8. Mathematica code
  • 3.9. Examples
  • 3.10. End notes
  • 4. The aspheric transfer-function lens
  • 4.1. Transfer functions
  • 4.2. Mathematical model of the planar transfer-function lens
  • 4.3. Ray tracing light passing through the transfer-function lens
  • 4.4. Mathematica code
  • 4.5. Examples
  • 4.6. End notes
  • 5. General equation for the aspheric wavefront generator lens
  • 5.1. Introduction
  • 5.2. Mathematical model for adaptive optics for finite images
  • 5.3. The wavefront generator lens for images at finite distances
  • 5.4. Mathematica code
  • 5.5. Examples
  • 5.6. Mathematical model for wavefront generator lenses for images at infinity
  • 5.7. Wavefront of the wavefront generator lens for images at infinity
  • 5.8. Mathematica code
  • 5.9. Examples
  • 5.10. End notes
  • part III. Freeform optical systems and the path of light. 6. General mirror for adaptive optical systems
  • 6.1. The crux of adaptive optics
  • 6.2. The general formula for freeform deformable mirrors for images at finite distances
  • 6.3. The wavefront for finite images
  • 6.4. Mathematica code
  • 6.5. Examples
  • 6.6. The crux of adaptive optics
  • 6.7. The eikonal of the crux of adaptive optics
  • 6.8. Mathematica code
  • 6.9. Examples
  • 6.10. End notes
  • 7. General freeform dioptric stigmatic surfaces
  • 7.1. Introduction
  • 7.2. Mathematical model of freeform stigmatic surfaces for images at finite distances
  • 7.3. The wavefronts of images at finite distances
  • 7.4. Mathematica
  • 7.5. Examples
  • 7.6. Mathematical model of freeform stigmatic surfaces for images at infinity
  • 7.7. The wavefront and the collimated output rays
  • 7.8. Mathematica code
  • 7.9. Examples
  • 7.10. End notes
  • 8. The freeform transfer function lens
  • 8.1. Introduction
  • 8.2. Mathematical model
  • 8.3. Ray tracing of light passing through the transfer function lens
  • 8.4. Mathematica code
  • 8.5. Examples
  • 8.6. End notes
  • 9. General equation of the freeform wavefront generator lens
  • 9.1. Introduction
  • 9.2. Mathematical model for freeform wavefront generator lenses
  • 9.3. The wavefront produced by the wavefront generator lens for finite images
  • 9.4. Mathematica code
  • 9.5. Examples
  • 9.6. End notes.