Optical path theory : fundamentals to freeform adaptive optics /
This book is mostly based in an equation that was recently published. The equation is the general formula for adaptive optics mirrors, which was published in January 2021--General mirror formula for adaptive optics, Applied Optics 60(2).
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2022]
|
Colección: | IOP (Series). Release 22.
IOP series in emerging technologies in optics and photonics. IOP ebooks. 2022 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- part I. Introduction to optical path theory. 1. The path of light
- 1.1. Purpose and introduction to this treatise
- 1.2. The optical path and Fermat's principle
- 1.3. The law of reflection
- 1.4. The law of refraction
- 1.5. The vector form of Snell's law
- 1.6. The wavefront and the Malus-Dupin theorem
- 1.7. Optical path difference and phase difference
- 1.8. Stigmatism and aberrated wavefronts
- 1.9. Adaptive optics
- 1.10. Optical testing
- 1.11. End notes
- part II. Aspheric optical systems and the path of light. 2. General catoptric stigmatic surfaces
- 2.1. The crux of adaptive optics
- 2.2. General equation for deformable mirrors for images at a finite distance
- 2.3. The eikonal, the wavefront, and ray tracing
- 2.4. Mathematica code
- 2.5. Examples
- 2.6. The general equation for deformable mirrors for images at infinity
- 2.7. The eikonal, the wavefront, and ray tracing
- 2.8. Mathematica code
- 2.9. Examples
- 2.10. End notes
- 3. General dioptric stigmatic surfaces
- 3.1. A more general solution than Cartesian ovals
- 3.2. General equation for stigmatic surfaces for images at finite distances
- 3.3. The wavefronts of images at finite distances
- 3.4. Mathematica code
- 3.5. Examples
- 3.6. The general equation for stigmatic surfaces for images at infinity
- 3.7. The wavefronts of images at infinity
- 3.8. Mathematica code
- 3.9. Examples
- 3.10. End notes
- 4. The aspheric transfer-function lens
- 4.1. Transfer functions
- 4.2. Mathematical model of the planar transfer-function lens
- 4.3. Ray tracing light passing through the transfer-function lens
- 4.4. Mathematica code
- 4.5. Examples
- 4.6. End notes
- 5. General equation for the aspheric wavefront generator lens
- 5.1. Introduction
- 5.2. Mathematical model for adaptive optics for finite images
- 5.3. The wavefront generator lens for images at finite distances
- 5.4. Mathematica code
- 5.5. Examples
- 5.6. Mathematical model for wavefront generator lenses for images at infinity
- 5.7. Wavefront of the wavefront generator lens for images at infinity
- 5.8. Mathematica code
- 5.9. Examples
- 5.10. End notes
- part III. Freeform optical systems and the path of light. 6. General mirror for adaptive optical systems
- 6.1. The crux of adaptive optics
- 6.2. The general formula for freeform deformable mirrors for images at finite distances
- 6.3. The wavefront for finite images
- 6.4. Mathematica code
- 6.5. Examples
- 6.6. The crux of adaptive optics
- 6.7. The eikonal of the crux of adaptive optics
- 6.8. Mathematica code
- 6.9. Examples
- 6.10. End notes
- 7. General freeform dioptric stigmatic surfaces
- 7.1. Introduction
- 7.2. Mathematical model of freeform stigmatic surfaces for images at finite distances
- 7.3. The wavefronts of images at finite distances
- 7.4. Mathematica
- 7.5. Examples
- 7.6. Mathematical model of freeform stigmatic surfaces for images at infinity
- 7.7. The wavefront and the collimated output rays
- 7.8. Mathematica code
- 7.9. Examples
- 7.10. End notes
- 8. The freeform transfer function lens
- 8.1. Introduction
- 8.2. Mathematical model
- 8.3. Ray tracing of light passing through the transfer function lens
- 8.4. Mathematica code
- 8.5. Examples
- 8.6. End notes
- 9. General equation of the freeform wavefront generator lens
- 9.1. Introduction
- 9.2. Mathematical model for freeform wavefront generator lenses
- 9.3. The wavefront produced by the wavefront generator lens for finite images
- 9.4. Mathematica code
- 9.5. Examples
- 9.6. End notes.