Optical path theory : fundamentals to freeform adaptive optics /
This book is mostly based in an equation that was recently published. The equation is the general formula for adaptive optics mirrors, which was published in January 2021--General mirror formula for adaptive optics, Applied Optics 60(2).
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2022]
|
Colección: | IOP (Series). Release 22.
IOP series in emerging technologies in optics and photonics. IOP ebooks. 2022 collection. |
Temas: | |
Acceso en línea: | Texto completo |
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | IOP_9780750347051 | ||
003 | IOP | ||
005 | 20220705101458.0 | ||
006 | m eo d | ||
007 | cr cn |||m|||a | ||
008 | 220705s2022 enka fob 000 0 eng d | ||
020 | |a 9780750347051 |q ebook | ||
020 | |a 9780750347044 |q mobi | ||
020 | |z 9780750347037 |q print | ||
020 | |z 9780750347068 |q myPrint | ||
024 | 7 | |a 10.1088/978-0-7503-4705-1 |2 doi | |
035 | |a (CaBNVSL)thg00083294 | ||
035 | |a (OCoLC)1336503080 | ||
040 | |a CaBNVSL |b eng |e rda |c CaBNVSL |d CaBNVSL | ||
050 | 4 | |a TA1522 |b .G666 2022eb | |
072 | 7 | |a PHJ |2 bicssc | |
072 | 7 | |a SCI053000 |2 bisacsh | |
082 | 0 | 4 | |a 621.36/9 |2 23 |
100 | 1 | |a González-Acuäna, Rafael G., |e author. | |
245 | 1 | 0 | |a Optical path theory : |b fundamentals to freeform adaptive optics / |c Rafael G. González-Acuäna, Héctor A. Chaparro-Romo. |
246 | 3 | 0 | |a Fundamentals to freeform adaptive optics. |
264 | 1 | |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : |b IOP Publishing, |c [2022] | |
300 | |a 1 online resource (various pagings) : |b illustrations (some color). | ||
336 | |a text |2 rdacontent | ||
337 | |a electronic |2 isbdmedia | ||
338 | |a online resource |2 rdacarrier | ||
490 | 1 | |a [IOP release $release] | |
490 | 1 | |a IOP series in emerging technologies in optics and photonics | |
490 | 1 | |a IOP ebooks. [2022 collection] | |
500 | |a "Version: 20220601"--Title page verso. | ||
504 | |a Includes bibliographical references. | ||
505 | 0 | |a part I. Introduction to optical path theory. 1. The path of light -- 1.1. Purpose and introduction to this treatise -- 1.2. The optical path and Fermat's principle -- 1.3. The law of reflection -- 1.4. The law of refraction -- 1.5. The vector form of Snell's law -- 1.6. The wavefront and the Malus-Dupin theorem -- 1.7. Optical path difference and phase difference -- 1.8. Stigmatism and aberrated wavefronts -- 1.9. Adaptive optics -- 1.10. Optical testing -- 1.11. End notes | |
505 | 8 | |a part II. Aspheric optical systems and the path of light. 2. General catoptric stigmatic surfaces -- 2.1. The crux of adaptive optics -- 2.2. General equation for deformable mirrors for images at a finite distance -- 2.3. The eikonal, the wavefront, and ray tracing -- 2.4. Mathematica code -- 2.5. Examples -- 2.6. The general equation for deformable mirrors for images at infinity -- 2.7. The eikonal, the wavefront, and ray tracing -- 2.8. Mathematica code -- 2.9. Examples -- 2.10. End notes | |
505 | 8 | |a 3. General dioptric stigmatic surfaces -- 3.1. A more general solution than Cartesian ovals -- 3.2. General equation for stigmatic surfaces for images at finite distances -- 3.3. The wavefronts of images at finite distances -- 3.4. Mathematica code -- 3.5. Examples -- 3.6. The general equation for stigmatic surfaces for images at infinity -- 3.7. The wavefronts of images at infinity -- 3.8. Mathematica code -- 3.9. Examples -- 3.10. End notes | |
505 | 8 | |a 4. The aspheric transfer-function lens -- 4.1. Transfer functions -- 4.2. Mathematical model of the planar transfer-function lens -- 4.3. Ray tracing light passing through the transfer-function lens -- 4.4. Mathematica code -- 4.5. Examples -- 4.6. End notes | |
505 | 8 | |a 5. General equation for the aspheric wavefront generator lens -- 5.1. Introduction -- 5.2. Mathematical model for adaptive optics for finite images -- 5.3. The wavefront generator lens for images at finite distances -- 5.4. Mathematica code -- 5.5. Examples -- 5.6. Mathematical model for wavefront generator lenses for images at infinity -- 5.7. Wavefront of the wavefront generator lens for images at infinity -- 5.8. Mathematica code -- 5.9. Examples -- 5.10. End notes | |
505 | 8 | |a part III. Freeform optical systems and the path of light. 6. General mirror for adaptive optical systems -- 6.1. The crux of adaptive optics -- 6.2. The general formula for freeform deformable mirrors for images at finite distances -- 6.3. The wavefront for finite images -- 6.4. Mathematica code -- 6.5. Examples -- 6.6. The crux of adaptive optics -- 6.7. The eikonal of the crux of adaptive optics -- 6.8. Mathematica code -- 6.9. Examples -- 6.10. End notes | |
505 | 8 | |a 7. General freeform dioptric stigmatic surfaces -- 7.1. Introduction -- 7.2. Mathematical model of freeform stigmatic surfaces for images at finite distances -- 7.3. The wavefronts of images at finite distances -- 7.4. Mathematica -- 7.5. Examples -- 7.6. Mathematical model of freeform stigmatic surfaces for images at infinity -- 7.7. The wavefront and the collimated output rays -- 7.8. Mathematica code -- 7.9. Examples -- 7.10. End notes | |
505 | 8 | |a 8. The freeform transfer function lens -- 8.1. Introduction -- 8.2. Mathematical model -- 8.3. Ray tracing of light passing through the transfer function lens -- 8.4. Mathematica code -- 8.5. Examples -- 8.6. End notes | |
505 | 8 | |a 9. General equation of the freeform wavefront generator lens -- 9.1. Introduction -- 9.2. Mathematical model for freeform wavefront generator lenses -- 9.3. The wavefront produced by the wavefront generator lens for finite images -- 9.4. Mathematica code -- 9.5. Examples -- 9.6. End notes. | |
520 | 3 | |a This book is mostly based in an equation that was recently published. The equation is the general formula for adaptive optics mirrors, which was published in January 2021--General mirror formula for adaptive optics, Applied Optics 60(2). | |
521 | |a Optical engineers, academics in optics and physics. | ||
530 | |a Also available in print. | ||
538 | |a Mode of access: World Wide Web. | ||
538 | |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. | ||
545 | |a Rafael G. González-Acuäna studied industrial physics engineering at the Tecnológico de Monterrey gaining a master's degree in optomechatronics at the Optics Research Center, A.C., and studied his PhD at the Tecnológico de Monterrey. Héctor A Chaparro-Romo, Electronic Engineer with Master's studies in Computer Science specialised in scientific computation and years of experience in optics research and applications, he is co-author of the solution to the problem of designing bi-aspheric singlet lenses free of spherical aberration. | ||
588 | 0 | |a Title from PDF title page (viewed on July 5, 2022). | |
650 | 0 | |a Optics, Adaptive. | |
650 | 7 | |a Optical physics. |2 bicssc | |
650 | 7 | |a Optics and photonics. |2 bisacsh | |
700 | 1 | |a Chaparro-Romo, Héctor A., |e author. | |
710 | 2 | |a Institute of Physics (Great Britain), |e publisher. | |
776 | 0 | 8 | |i Print version: |z 9780750347037 |z 9780750347068 |
830 | 0 | |a IOP (Series). |p Release 22. | |
830 | 0 | |a IOP series in emerging technologies in optics and photonics. | |
830 | 0 | |a IOP ebooks. |p 2022 collection. | |
856 | 4 | 0 | |u https://iopscience.uam.elogim.com/book/978-0-7503-4705-1 |z Texto completo |