Cargando…

Optical path theory : fundamentals to freeform adaptive optics /

This book is mostly based in an equation that was recently published. The equation is the general formula for adaptive optics mirrors, which was published in January 2021--General mirror formula for adaptive optics, Applied Optics 60(2).

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: González-Acuäna, Rafael G. (Autor), Chaparro-Romo, Héctor A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]
Colección:IOP (Series). Release 22.
IOP series in emerging technologies in optics and photonics.
IOP ebooks. 2022 collection.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 i 4500
001 IOP_9780750347051
003 IOP
005 20220705101458.0
006 m eo d
007 cr cn |||m|||a
008 220705s2022 enka fob 000 0 eng d
020 |a 9780750347051  |q ebook 
020 |a 9780750347044  |q mobi 
020 |z 9780750347037  |q print 
020 |z 9780750347068  |q myPrint 
024 7 |a 10.1088/978-0-7503-4705-1  |2 doi 
035 |a (CaBNVSL)thg00083294 
035 |a (OCoLC)1336503080 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a TA1522  |b .G666 2022eb 
072 7 |a PHJ  |2 bicssc 
072 7 |a SCI053000  |2 bisacsh 
082 0 4 |a 621.36/9  |2 23 
100 1 |a González-Acuäna, Rafael G.,  |e author. 
245 1 0 |a Optical path theory :  |b fundamentals to freeform adaptive optics /  |c Rafael G. González-Acuäna, Héctor A. Chaparro-Romo. 
246 3 0 |a Fundamentals to freeform adaptive optics. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2022] 
300 |a 1 online resource (various pagings) :  |b illustrations (some color). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release $release] 
490 1 |a IOP series in emerging technologies in optics and photonics 
490 1 |a IOP ebooks. [2022 collection] 
500 |a "Version: 20220601"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a part I. Introduction to optical path theory. 1. The path of light -- 1.1. Purpose and introduction to this treatise -- 1.2. The optical path and Fermat's principle -- 1.3. The law of reflection -- 1.4. The law of refraction -- 1.5. The vector form of Snell's law -- 1.6. The wavefront and the Malus-Dupin theorem -- 1.7. Optical path difference and phase difference -- 1.8. Stigmatism and aberrated wavefronts -- 1.9. Adaptive optics -- 1.10. Optical testing -- 1.11. End notes 
505 8 |a part II. Aspheric optical systems and the path of light. 2. General catoptric stigmatic surfaces -- 2.1. The crux of adaptive optics -- 2.2. General equation for deformable mirrors for images at a finite distance -- 2.3. The eikonal, the wavefront, and ray tracing -- 2.4. Mathematica code -- 2.5. Examples -- 2.6. The general equation for deformable mirrors for images at infinity -- 2.7. The eikonal, the wavefront, and ray tracing -- 2.8. Mathematica code -- 2.9. Examples -- 2.10. End notes 
505 8 |a 3. General dioptric stigmatic surfaces -- 3.1. A more general solution than Cartesian ovals -- 3.2. General equation for stigmatic surfaces for images at finite distances -- 3.3. The wavefronts of images at finite distances -- 3.4. Mathematica code -- 3.5. Examples -- 3.6. The general equation for stigmatic surfaces for images at infinity -- 3.7. The wavefronts of images at infinity -- 3.8. Mathematica code -- 3.9. Examples -- 3.10. End notes 
505 8 |a 4. The aspheric transfer-function lens -- 4.1. Transfer functions -- 4.2. Mathematical model of the planar transfer-function lens -- 4.3. Ray tracing light passing through the transfer-function lens -- 4.4. Mathematica code -- 4.5. Examples -- 4.6. End notes 
505 8 |a 5. General equation for the aspheric wavefront generator lens -- 5.1. Introduction -- 5.2. Mathematical model for adaptive optics for finite images -- 5.3. The wavefront generator lens for images at finite distances -- 5.4. Mathematica code -- 5.5. Examples -- 5.6. Mathematical model for wavefront generator lenses for images at infinity -- 5.7. Wavefront of the wavefront generator lens for images at infinity -- 5.8. Mathematica code -- 5.9. Examples -- 5.10. End notes 
505 8 |a part III. Freeform optical systems and the path of light. 6. General mirror for adaptive optical systems -- 6.1. The crux of adaptive optics -- 6.2. The general formula for freeform deformable mirrors for images at finite distances -- 6.3. The wavefront for finite images -- 6.4. Mathematica code -- 6.5. Examples -- 6.6. The crux of adaptive optics -- 6.7. The eikonal of the crux of adaptive optics -- 6.8. Mathematica code -- 6.9. Examples -- 6.10. End notes 
505 8 |a 7. General freeform dioptric stigmatic surfaces -- 7.1. Introduction -- 7.2. Mathematical model of freeform stigmatic surfaces for images at finite distances -- 7.3. The wavefronts of images at finite distances -- 7.4. Mathematica -- 7.5. Examples -- 7.6. Mathematical model of freeform stigmatic surfaces for images at infinity -- 7.7. The wavefront and the collimated output rays -- 7.8. Mathematica code -- 7.9. Examples -- 7.10. End notes 
505 8 |a 8. The freeform transfer function lens -- 8.1. Introduction -- 8.2. Mathematical model -- 8.3. Ray tracing of light passing through the transfer function lens -- 8.4. Mathematica code -- 8.5. Examples -- 8.6. End notes 
505 8 |a 9. General equation of the freeform wavefront generator lens -- 9.1. Introduction -- 9.2. Mathematical model for freeform wavefront generator lenses -- 9.3. The wavefront produced by the wavefront generator lens for finite images -- 9.4. Mathematica code -- 9.5. Examples -- 9.6. End notes. 
520 3 |a This book is mostly based in an equation that was recently published. The equation is the general formula for adaptive optics mirrors, which was published in January 2021--General mirror formula for adaptive optics, Applied Optics 60(2). 
521 |a Optical engineers, academics in optics and physics. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Rafael G. González-Acuäna studied industrial physics engineering at the Tecnológico de Monterrey gaining a master's degree in optomechatronics at the Optics Research Center, A.C., and studied his PhD at the Tecnológico de Monterrey. Héctor A Chaparro-Romo, Electronic Engineer with Master's studies in Computer Science specialised in scientific computation and years of experience in optics research and applications, he is co-author of the solution to the problem of designing bi-aspheric singlet lenses free of spherical aberration. 
588 0 |a Title from PDF title page (viewed on July 5, 2022). 
650 0 |a Optics, Adaptive. 
650 7 |a Optical physics.  |2 bicssc 
650 7 |a Optics and photonics.  |2 bisacsh 
700 1 |a Chaparro-Romo, Héctor A.,  |e author. 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750347037  |z 9780750347068 
830 0 |a IOP (Series).  |p Release 22. 
830 0 |a IOP series in emerging technologies in optics and photonics. 
830 0 |a IOP ebooks.  |p 2022 collection. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-4705-1  |z Texto completo