Deep learning technologies for social impact /
Artificial intelligence is gaining traction in areas of social responsibility. From climate change to social polarization to epidemics, humankind has been seeking new solutions to these ever-present problems. Deep learning (DL) techniques have increased in power in recent years, with algorithms alre...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (No.2 The Distillery, Glassfields, Avon Street, Bristol, BS2 0GR, UK) :
IOP Publishing,
[2022]
|
Colección: | IOP (Series). Release 22.
IOP series in next generation computing. IOP ebooks. 2022 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- part I. Introduction. 1. Deep learning for social good--an introduction
- 1.1. Deep learning--a subset of AI
- 1.2. History of deep learning
- 1.3. Trends--deep learning for social good
- 1.4. Motivations
- 1.5. Deep learning for social good--a need
- 1.6. Intended audience
- 1.7. Chapters and descriptions
- 1.8. Reading flow
- 2. Applications for social good
- 2.1. Characteristics of social-good applications
- 2.2. Generic architecture--entities
- 2.3. Applications for social good
- 2.4. Technologies and techniques
- 2.5. Technology--blockchain
- 2.6. AI/machine learning/deep learning techniques
- 2.7. The Internet of things/sensor technology
- 2.8. Robotic technology
- 2.9. Computing infrastructures--a needy technology
- 2.10. Security-related techniques
- 3. Computing architectures--base technologies
- 3.1. History of computing
- 3.2. Types of computing
- 3.3. Hardware support for deep learning
- 3.4. Microcontrollers, microprocessors, and FPGAs
- 3.5. Cloud computing--an environment for deep learning
- 3.6. Virtualization--a base for cloud computing
- 3.7. Hypervisors--impact on deep learning
- 3.8. Containers and Dockers
- 3.9. Cloud execution models
- 3.10. Programming deep learning tasks--libraries
- 3.11. Sensor-enabled data collection for DLs
- 3.12. Edge-level deep learning systems
- part II. Deep learning techniques. 4. CNN techniques
- 4.1. CNNs--introduction
- 4.2. CNNs--nuts and bolts
- 4.3. Social-good applications--a CNN perspective
- 4.4. CNN use case--climate change problem
- 4.5. CNN challenges
- 5. Object detection techniques and algorithms
- 5.1. Computer vision--taxonomy
- 5.2. Object detection--objectives
- 5.3. Object detection--challenges
- 5.4. Object detection--major steps or processes
- 5.5. Object detection methods
- 5.6. Applications
- 5.7. Exam proctoring--YOLOv5
- 5.8. Proctoring system--implementation stages
- 6. Sentiment analysis--algorithms and frameworks
- 6.1. Sentiment analysis--an introduction
- 6.2. Levels and approaches
- 6.3. Sentiment analysis--processes
- 6.4. Recommendation system--sentiment analysis
- 6.5. Movie recommendation--a case study
- 6.6. Metrics
- 6.7. Tools and frameworks
- 6.8. Sentiment analysis--sarcasm detection
- 7. Autoencoders and variational autoencoders
- 7.1. Introduction--autoencoders
- 7.2. Autoencoder architectures
- 7.3. Types of autoencoder
- 7.4. Applications of autoencoders
- 7.5. Variational autoencoders
- 7.6. Autoencoder implementation--code snippet explanation
- 8. GANs and disentangled mechanisms
- 8.1. Introduction to GANs
- 8.2. Concept--generative and descriptive
- 8.3. Major steps involved
- 8.4. GAN architecture
- 8.5. Types of GAN
- 8.6. StyleGAN
- 8.7. A simple implementation of a GAN
- 8.8. Quality of GANs
- 8.9. Applications and challenges
- 9. Deep reinforcement learning architectures
- 9.1. Deep reinforcement learning--an introduction
- 9.2. The difference between deep reinforcement learning and machine learning
- 9.3. The difference between deep learning and reinforcement learning
- 9.4. Reinforcement learning applications
- 9.5. Components of RL frameworks
- 9.6. Reinforcement learning techniques
- 9.7. Reinforcement learning algorithms
- 9.8. Integration into real-world systems
- 10. Facial recognition and applications
- 10.1. Facial recognition--a historical view
- 10.2. Biometrics using faces
- 10.3. Facial detection versus recognition
- 10.4. Facial recognition--processes
- 10.5. Applications
- 10.6. Emotional intelligence--a facial recognition application
- 10.7. Emotion detection--database creation
- 10.8. Challenges and future work
- part III. Security, performance, and future directions. 11. Data security and platforms
- 11.1. Security breaches
- 11.2. Security attacks
- 11.3. Deep-learning-related security attacks
- 11.4. Metrics
- 11.5. Execution environments
- 11.6. Using deep learning to enhance security
- 12. Performance monitoring and analysis
- 12.1. Performance monitoring
- 12.2. The need for performance monitoring
- 12.3. Performance analysis methods/approaches
- 12.4. Performance metrics
- 12.5. Evaluation platforms
- 13. Deep learning--future perspectives
- 13.1. Data diversity and generalization
- 13.2. Applications.