Cargando…

Quantitative phase microscopy and tomography : techniques using partially spatially coherent monochromatic light /

This book develops and describes the most advanced QPM techniques and computational imaging techniques using partially spatially coherent monochromatic light rather than highly coherent lasers.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mehta, Dalip Singh (Autor), Butola, Ankit (Autor), Singh, Veena (M. Tech. in laser technology) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]
Colección:IOP (Series). Release 22.
IOP series in advances in optics, photonics and optoelectronics.
IOP ebooks. 2022 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction
  • 1.1. Bright field microscopy
  • 1.2. Phase contrast microscopy
  • 1.3. Quantitative phase microscopy
  • 1.4. Coherence properties of laser light
  • 1.5. Origin of speckles in imaging and microscopy
  • 1.6. Effects of speckle on imaging and microscopy
  • 1.7. Methods of generating partially spatially coherent light
  • 2. Partially spatially coherent off-axis quantitative phase microscopy
  • 2.1. Off-axis holographic phase microscopy
  • 2.2. Partially spatially coherent off-axis quantitative phase microscopy
  • 2.3. Image characteristics
  • 2.4. Extraction of quantitative information using phase map
  • 3. Partially spatially coherent common-path quantitative phase microscopy
  • 3.1. Gabor (in-line) holography
  • 3.2. Diffraction phase microscopy
  • 3.3. Fourier phase microscopy
  • 3.4. Lateral shearing interferometric phase microscopy
  • 3.5. Fresnel bi-prism based interferometric phase microscopy
  • 3.6. Spatial phase sensitivity
  • 3.7. Temporal phase stability
  • 3.8. Resolution of the system
  • 4. Structured illumination quantitative phase microscopy
  • 4.1. Diffraction-limited resolution of phase microscopy
  • 4.2. Structured illumination schemes for phase microscopy
  • 4.3. Common-path geometries for SIQPM
  • 4.4. Phase reconstruction algorithms for SIPM
  • 5. Multimodal on-chip nanoscopy and quantitative phase microscopy
  • 5.1. Fluorescence imaging
  • 5.2. Total internal reflections fluorescence microscopy
  • 5.3. Super-resolution fluorescence imaging
  • 5.4. Integrated on-chip nanoscopy and partially spatially coherent quantitative phase microscopy
  • 5.5. Applications of integrated on-chip nanoscopy and quantitative phase microscopy
  • 6. Longitudinal spatial coherence gated tomography using partially spatially coherent monochromatic light
  • 6.1. Introduction to time-domain and frequency-domain optical coherence tomography
  • 6.2. Axial-resolution in OCT systems
  • 6.3. Dispersion effects in OCT
  • 6.4. Concept of longitudinal spatial coherence
  • 6.5. Longitudinal spatial coherence gated topography and tomography
  • 7. Low-coherence (white light) interference microscopy with colour fringe analysis
  • 7.1. Introduction to low coherence interferometry
  • 7.2. Phase-shifting white light interference microscopy
  • 7.3. Color fringe analysis
  • 7.4. Quantitative information about biological samples
  • 8. Artificial intelligence : a computational tool to interpret quantitative phase imaging
  • 8.1. Introduction
  • 8.2. Machine learning to understand QPI/need of machine learning and deep learning in phase microscopy
  • 8.3. Practical prescription for machine learning in QPI
  • 8.4. Outlook
  • 9. Multi-spectral and hyper-spectral phase microscopy
  • 9.1. Introduction
  • 9.2. Multi-spectral phase microscopy
  • 9.3. Hyper-spectral quantitative phase microscopy
  • 9.4. Optical configurations of multi-spectral and hyper-spectral phase microscopy
  • 9.5. Light sources for multi-spectral and hyper-spectral phase microscopy
  • 9.6. Recording devices for multi-spectral and hyper-spectral phase microscopy
  • 9.7. Algorithms for image reconstruction
  • 9.8. Applications of multi-spectral and hyper-spectral phase microscopy
  • 10. Conclusions and future prospects.