Cargando…

A brief introduction to topology and differential geometry in condensed matter physics /

This book provides a self-consistent introduction to the mathematical ideas and methods from these fields that will enable the student of condensed matter physics to begin applying these concepts with confidence. This expanded second edition adds eight new chapters, including one on the classificati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pires, A. (Antonio) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2021]
Edición:Second edition.
Colección:IOP (Series). Release 21.
IOP ebooks. 2021 collection.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 i 4500
001 IOP_9780750339551
003 IOP
005 20211206101458.0
006 m eo d
007 cr cn |||m|||a
008 211206s2021 enka fob 000 0 eng d
020 |a 9780750339551  |q ebook 
020 |a 9780750339544  |q mobi 
020 |z 9780750339537  |q print 
020 |z 9780750339568  |q myPrint 
024 7 |a 10.1088/978-0-7503-3955-1  |2 doi 
035 |a (CaBNVSL)thg00082866 
035 |a (OCoLC)1288247152 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QC20  |b .P573 2021eb 
072 7 |a PHFC  |2 bicssc 
072 7 |a SCI077000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Pires, A.  |q (Antonio),  |e author. 
245 1 2 |a A brief introduction to topology and differential geometry in condensed matter physics /  |c Antonio Sergio Teixeira Pires. 
250 |a Second edition. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2021] 
300 |a 1 online resource (various pagings) :  |b illustrations (some color). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release $release] 
490 1 |a IOP ebooks. [2021 collection] 
500 |a "Version: 202111"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Path integral approach -- 1.1. Path integral -- 1.2. Path integral in quantum field theory -- 1.3. Spin -- 1.4. Path integral and statistical mechanics -- 1.5. Fermion path integral 
505 8 |a 2. Topology and vector spaces -- 2.1. Topological spaces -- 2.2. Group theory -- 2.3. Cocycle -- 2.4. Vector spaces -- 2.5. Linear maps -- 2.6. Dual space -- 2.7. Scalar product -- 2.8. Metric space -- 2.9. Tensors -- 2.10. p-Vectors and p-forms -- 2.11. Edge product -- 2.12. Pfaffian 
505 8 |a 3. Manifolds and fiber bundle -- 3.1. Manifolds -- 3.2. Lie algebra and Lie groups -- 3.3. Homotopy -- 3.4. Particle in a ring -- 3.5. Functions on manifolds -- 3.6. Tangent space -- 3.7. Cotangent space -- 3.8. Push-forward -- 3.9. Fiber bundle -- 3.10. Magnetic monopole -- 3.11. Tangent bundle -- 3.12. Vector field 
505 8 |a 4. Metric and curvature -- 4.1. Metric in a vector space -- 4.2. Metric in manifolds -- 4.3. Symplectic manifold -- 4.4. Exterior derivative -- 4.5. The Hodge * operator -- 4.6. The pull-back of a one-form -- 4.7. Orientation of a manifold -- 4.8. Integration on manifolds -- 4.9. Stokes' theorem -- 4.10. Homology -- 4.11. Cohomology -- 4.12. Degree of a map -- 4.13. Hopf-Poincaré theorem -- 4.14. Connection -- 4.15. Covariant derivative -- 4.16. Curvature -- 4.17. The Gauss-Bonnet theorem -- 4.18. Surfaces -- 4.19. Geodesics -- 4.20. Fundamental theorem of the Riemann geometry 
505 8 |a 5. Dirac equation and gauge fields -- 5.1. The Dirac equation -- 5.2. Two-dimensional Dirac equation -- 5.3. Electrodynamics -- 5.4. Time reversal -- 5.5. Gauge field as a connection -- 5.6. Chern classes -- 5.7. Abelian gauge fields -- 5.8. Non-Abelian gauge fields -- 5.9. Chern numbers for non-Abelian gauge fields -- 5.10. Maxwell equations using differential forms 
505 8 |a 6. Berry connection and particle moving in a magnetic field -- 6.1. Introduction -- 6.2. Berry phase -- 6.3. The Aharonov-Bohm effect -- 6.4. Non-Abelian Berry connections -- 6.5. The Aharonov-Casher effect 
505 8 |a 7. Quantum Hall effect -- 7.1. Integer quantum Hall effect -- 7.2. Currents at the edge -- 7.3. Kubo formula -- 7.4. The quantum Hall state on a lattice -- 7.5. Particle on a lattice -- 7.6. The TKNN invariant -- 7.7. Quantum spin Hall effect -- 7.8. Chern-Simons action -- 7.9. The fractional quantum Hall effect 
505 8 |a 8. Topological insulators -- 8.1. Two- and three-band insulators -- 8.2. Nielsen-Ninomiya theorem -- 8.3. Haldane model -- 8.4. Checkerboard lattice -- 8.5. States at the edge -- 8.6. The Z2 topological invariants -- 8.7. The Kane-Mele model -- 8.8. Three-dimensional topological insulators -- 8.9. Calculation of edge modes 
505 8 |a 9. Topological phases in one dimension -- 9.1. The Su-Schrieffer-Heeger model -- 9.2. Winding number and Zak phase -- 9.3. Finite chain -- 9.4. Alternative form of the SSH Hamiltonian -- 9.5. Localized states at a domain wall -- 9.6. The Ising chain in a transverse field -- 9.7. The Kitaev chain -- 9.8. Majorana fermion operators -- 9.9. Rashba spin-orbit superconductor in one dimension 
505 8 |a 10. Topological superconductors -- 10.1. Basics of superconductivity -- 10.2. Two-dimensional chiral p-wave superconductors -- 10.3. Two-dimensional chiral p-wave superconductor on a lattice -- 10.4. Continuum limit -- 10.5. Non-Abelian statistics -- 10.6. d-Wave pairing symmetry 
505 8 |a 11. Higher-order topological insulators -- 11.1. Crystalline symmetries -- 11.2. Second-order topological insulator in two dimensions -- 11.3. Gapless corner states -- 11.4. A three-dimensional chiral HOTI 
505 8 |a 12. Classification of topological states with symmetries -- 12.1. Symmetries -- 12.2. Time-reversal symmetry -- 12.3. Particle-hole symmetry -- 12.4. Chiral symmetry -- 12.5. Periodic table -- 12.6. Complex classes -- 12.7. Real classes -- 12.8. Classification for zero dimensions -- 12.9. Dirac Hamiltonians -- 12.10. Dimension reduction -- 12.11. Topological defects 
505 8 |a 13. Weyl semimetals -- 13.1. The Weyl equation -- 13.2. Linear Weyl modes -- 13.3. Chern numbers -- 13.4. An example -- 13.5. Fermi arcs -- 13.6. Weyl semimetal in an external magnetic field -- 13.7. Type II Weyl semimetals -- 13.8. Weyl semimetals with spins higher than 1/2 -- 13.9. Chiral anomaly -- 13.10. Dirac semimetals 
505 8 |a 14. Kubo theory and transport -- 14.1. Linear response theory -- 14.2. Electron transport -- 14.3. Anomalous Hall effect -- 14.4. Orbital magnetization -- 14.5. Spin transport -- 14.6. Interacting topological insulators 
505 8 |a 15. Magnetic models -- 15.1. One-dimensional antiferromagnetic model -- 15.2. Sine-Gordon soliton -- 15.3. Two-dimensional non-linear sigma model -- 15.4. XY model -- 15.5. Theta terms 
505 8 |a 16. Topological magnon insulators -- 16.1. Magnon Hall effect -- 16.2. The ferromagnetic honeycomb lattice -- 16.3. Generalized Bogoliubov transformation -- 16.4. Antiferromagnetic honeycomb lattice -- 16.5. Thermal Hall conductivity 
505 8 |a 17. K-theory -- 17.1. Rings -- 17.2. Equivalence relations -- 17.3. Grothendieck group -- 17.4. Sum of vector bundles -- 17.5. K-theory -- 17.6. K-theory and topological insulators -- 17.7. The 2Z invariant -- 17.8. The Atiyah-Singer index theorem. 
520 3 |a This book provides a self-consistent introduction to the mathematical ideas and methods from these fields that will enable the student of condensed matter physics to begin applying these concepts with confidence. This expanded second edition adds eight new chapters, including one on the classification of topological states of topological insulators and superconductors and another on Weyl semimetals, as well as elaborated discussions of the Aharonov-Casher effect, topological magnon insulators, topological superconductors and K-theory. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Antonio S.T. Pires graduated from the University of California in Santa Barbara in 1976. He is a Professor of Physics at the Universidade Federal de Minas Gerais, Brazil researching quantum field theory applied to condensed matter. He is a member of the Brazilian Academy of Science, was the Editor of the Brazilian Journal of Physics, and a member of the Advisory Board of the Journal of Physics: Condensed Matter. He has published the books ADS/CFT correspondence in condensed matter and theoretical tools for spin models in magnetic systems. 
588 0 |a Title from PDF title page (viewed on December 6, 2021). 
650 0 |a Mathematical physics. 
650 0 |a Condensed matter  |x Mathematics. 
650 0 |a Topology. 
650 0 |a Geometry, Differential. 
650 7 |a Condensed matter physics (liquid state & solid state physics)  |2 bicssc 
650 7 |a Condensed matter.  |2 bisacsh 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750339537  |z 9780750339568 
830 0 |a IOP (Series).  |p Release 21. 
830 0 |a IOP ebooks.  |p 2021 collection. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-3955-1  |z Texto completo