Theoretical tools for spin models in magnetic systems /
The book is dedicated to the study of theoretical tools in spin models in magnetism. The book presents the basic tools to treat spin models in magnetic systems such as: spin waves, Schwinger bosons formalism, Self-consistent harmonic approximation, Kubo theory, Perturbation theory using Green's...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2021]
|
Colección: | IOP (Series). Release 21.
IOP ebooks. 2021 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. The Heisenberg model
- 1.1. Ground state for the ferromagnet
- 1.2. Spontaneous broken symmetries
- 1.3. Ground state for the antiferromagnet
- 1.4. Excited states for the ferromagnet
- 1.5. Translational symmetry
- 1.6. Two spin waves
- 1.7. Long-range order
- 1.8. Mermin and Wagner's theorem
- 1.9. The Ising model
- 1.10. Brillouin zone
- 1.11. Mean-field approximation for the classical ferromagnetic Heisenberg model
- 1.12. Landau theory for phase transitions
- 1.13. The Hubbard model
- 1.14. Exercises
- 2. Spin waves I
- 2.1. Ferromagnet
- 2.2. Antiferromagnet
- 2.3. Helimagnets
- 2.4. Rotated sublattice
- 2.5. The XY model
- 2.6. The compass model
- 2.7. The Jordan-Wigner transformation
- 2.8. Hardcore bosons
- 2.9. Majorana fermions
- 2.10. Exercises
- 3. Spin waves II
- 3.1. Triangular lattice
- 3.2. Square lattice Heisenberg antiferromagnet in an external magnetic field
- 3.3. Dzyaloshinskii-Moriya interaction
- 3.4. Symmetries
- 3.5. Nonlinear spin-wave theory
- 3.6. Modified spin-wave theory
- 3.7. Exercises
- 4. Lattices with two inequivalent sites
- 4.1. The ferromagnetic honeycomb lattice
- 4.2. Generalized Bogoliubov transformation
- 4.3. The antiferromagnetic checkerboard lattice
- 4.4. Antiferromagnetic honeycomb lattice
- 4.5. The antiferromagnetic Union Jack lattice
- 4.6. Exercises
- 5. Schwinger bosons
- 5.1. Schwinger bosons
- 5.2. Mean-field approximation
- 5.3. Ferromagnet
- 5.4. Antiferromagnet
- 5.5. Gauge transformation
- 5.6. Frustration
- 5.7. Schwinger boson and the J1-J2 model
- 5.8. Valence bonds
- 5.9. VBS ground states for spins larger than 1/2
- 5.10. Fermion operators
- 5.11. Holons
- 5.12. The dimer order parameter
- 5.13. The Shastry-Sutherland lattice
- 5.14. Exercises
- 6. Bond operators and Schwinger SU(3) bosons
- 6.1. Bond operators
- 6.2. Quantum phase transitions
- 6.3. Schwinger SU(3) bosons
- 6.4. Bilinear biquadratic model
- 6.5. Variational approach
- 6.6. Exercises
- 7. Dynamics
- 7.1. Linear response theory
- 7.2. Relation between susceptibility and Green function
- 7.3. Correlation functions
- 7.4. Sum rules
- 7.5. A simple example
- 7.6. Spin transport
- 7.7. Kubo formulas
- 7.8. Green functions
- 7.9. Equation of motion for the retarded Green function
- 7.10. Green function in another context
- 7.11. The memory function method
- 7.12. Hydrodynamic fluctuations
- 7.13. A brief discussion about experimental techniques
- 7.14. Exercises
- 8. Perturbation theory
- 8.1. The interaction representation
- 8.2. Green functions
- 8.3. Wick's theorem
- 8.4. Feynman diagrams
- 8.5. Interpretation of the Green function
- 8.6. Two-particle Green function
- 8.7. Antiferromagnet
- 8.8. Finite temperature Green function
- 8.9. Magnon-phonon interaction
- 8.10. Exercise
- 9. Topological magnon Hall effects
- 9.1. Quantum Hall effect of electrons
- 9.2. Magnons in ferromagnets
- 9.3. Transport in two-band models
- 9.4. Thermal Hall conductivity
- 9.5. Three-band model
- 9.6. Calculation of the edge modes
- 9.7. Antiferromagnets
- 9.8. Skyrmions
- 9.9. Exercises
- 10. Topological spin liquids
- 10.1. Z2 gauge theory
- 10.2. Dimers
- 11. Numerical methods for spin models
- 11.1. Monte Carlo
- 11.2. Classical Monte Carlo
- 11.3. Quantum Monte Carlo
- 11.4. High-temperature expansions
- 11.5. The density matrix renormalization group
- 11.6. Exact diagonalization
- 11.7. Coupled-cluster method
- 11.8. Conclusions.