Cargando…

Turbulence and instabilities in magnetised plasmas. Volume 2, Gyrokinetic theory and gyrofluid turbulence /

The second of a two-volume set, this book begins with a review of the concepts behind magnetised plasma turbulence as covered in Volume One. After covering the effects of temperature dynamics, especially heat flux inertia, the rest of the first half reviews classical field theory in the necessary la...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Scott, Bruce D. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2021]
Colección:IOP (Series). Release 21.
IOP series in plasma physics.
IOP ebooks. 2021 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Prelude to volume two
  • 1.1. Plasma, magnetised, parameters
  • 1.2. Low frequency, flute mode ordering
  • 1.3. Drifts, ExB flow, currents
  • 1.4. Polarisation and quasineutrality
  • 1.5. Turbulence
  • 1.6. Turbulence in magnetised plasmas
  • 1.7. Kinetic theory, turbulence, and MHD instabilities
  • 2. Effects of the electron temperature
  • 2.1. Introduction--electron temperature
  • 2.2. Conservative effects
  • 2.3. Dissipative effects
  • 2.4. equations for magnetised plasma turbulence
  • 2.5. Parameters, normalised equations, geometry
  • 2.6. Energetics
  • 2.7. Heat flux and kinetic shear Alfvén waves
  • 2.8. Drift Alfvén turbulence
  • 2.9. Mode structure
  • 2.10. Dependence on parameters
  • 2.11. Summary
  • 3. Effects of the ion temperature
  • 3.1. Introduction--ion temperature as independent
  • 3.2. The Larmor radius and gyro averaging
  • 3.3. Gyroaveraging versus gyroviscosity
  • 3.4. Effects on cold ion dynamics
  • 3.5. Ion temperature gradient (ITG) modes
  • 3.6. Warm-ion toroidal drift Alfvén model
  • 3.7. Electromagnetic ITG turbulence in a hot plasma
  • 3.8. Warm ion drift Alfvén turbulence
  • 3.9. On gyroviscosity
  • 3.10. Summary
  • 4. Lagrangian field theory and drifts
  • 4.1. Low frequency drifts
  • 4.2. Lagrangian field theory
  • 4.3. Canonical representation
  • 4.4. Lagrangian field theory in canonical form
  • 4.5. Towards drifts
  • 4.6. Quasineutrality
  • 4.7. Interlude--Noether's theorem
  • 5. Introduction to gyrokinetic theory
  • 5.1. Ideas behind the gyrokinetic representation
  • 5.2. Lagrangian basis of kinetic theory
  • 5.3. The strategy of gyrokinetics
  • 5.4. The drift-kinetic Lagrangian
  • 5.5. The field variables as perturbations
  • 5.6. The Lie transform
  • 5.7. The gyroaverage
  • 5.8. The gyrocentre phase space density and flow
  • 5.9. The gyrokinetic field Lagrangian
  • 5.10. Simplified limits
  • 6. Phase space and energetic consistency
  • 6.1. Summary of ideas
  • 6.2. Basic structure of the model
  • 6.3. The Euler-Lagrange equations for gyrocentres
  • 6.4. Symmetry in gyrocentre dynamics
  • 6.5. Application of Noether's theorem
  • 6.6. Energy conservation
  • 6.7. Momentum conservation
  • 6.8. Gyrokinetic drifts
  • 6.9. Gyrokinetic energetics
  • 6.10. Simplified geometry and the form of the Jacobian
  • 7. Gyrokinetic theory for local dynamics
  • 7.1. Ideas behind delta-f gyrokinetics
  • 7.2. Total-f Lagrangian and energetics
  • 7.3. Linearised polarisation
  • 7.4. The free energy
  • 7.5. Sketch of the delta-f approach
  • 7.6. Systematics of the delta-f equations
  • 7.7. Delta-f energetics and correspondence
  • 7.8. On consistency
  • 7.9. The gyroaveraged magnetic field
  • 7.10. What happened to momentum
  • 8. Gyrokinetic treatment of waves
  • 8.1. Introduction
  • 8.2. Kinetic responses
  • 8.3. Adiabatic drift acoustic wave
  • 8.4. Kinetic shear Alfvén wave
  • 8.5. Drift-Alfvén wave
  • 8.6. Landau damping as thermal conduction
  • 8.7. Kinetic resonance--Landau damping
  • 8.8. Summary
  • 9. Introduction to gyrofluid theory
  • 9.1. Introduction
  • 9.2. Heuristic gyrofluid 2D turbulence
  • 9.3. Heuristic gyrofluid 3D turbulence
  • 9.4. Gyrofluid systematics
  • 9.5. Gyrofluid energetics
  • 9.6. Summary
  • 10. Gyrofluid equations for thermal dynamics
  • 10.1. Introduction
  • 10.2. The gyrofluid model with thermal responses
  • 10.3. Collisions in general
  • 10.4. Thermal gyrofluid energetics
  • 10.5. Correspondence to the fluid model
  • 10.6. On usefulness
  • 11. Gyrofluid drift-Alfvén turbulence
  • 11.1. Introduction--gyrofluid turbulence
  • 11.2. Electromagnetic gyrofluid equations
  • 11.3. Energetics
  • 11.4. ITG turbulence in a hot plasma
  • 11.5. Drift Alfvén turbulence in a warm plasma
  • 11.6. Thermal anisotropy
  • 11.7. Summary
  • 12. Electron gyroscale turbulence
  • 12.1. Introduction--the gyroscale
  • 12.2. Responses below the ion gyroradius
  • 12.3. Heuristic 2D electron gyroscale model
  • 12.4. ITG and ETG isomorphism
  • 12.5. Three-dimensional adiabatic ETG turbulence
  • 12.6. The two-scale problem
  • 12.7. Summary
  • 13. Trapped-electron turbulence
  • 13.1. Introduction--magnetic trapping chk
  • 13.2. Gyrokinetic Hamiltonian in a system with symmetry
  • 13.3. The toroidal precession drift
  • 13.4. Single-centre drifts versus gyrokinetics
  • 13.5. Trapped electrons as separate species in turbulence
  • 13.6. On the kinetic details
  • 13.7. Summary
  • 14. Turbulence and test particles
  • 14.1. Introduction--trace species
  • 14.2. A two-dimensional trace species model
  • 14.3. A three-dimensional three-species gyrofluid model
  • 14.4. Summary
  • 15. Current driven MHD instabilities
  • 15.1. Introduction
  • 15.2. Ideal MHD and the energy principle
  • 15.3. Tearing modes and reconnection
  • 15.4. Ballooning modes
  • 15.5. Kink modes
  • 15.6. Mode types not covered
  • 15.7. Turbulence in a current channel
  • 15.8. Summary
  • 16. Gyrokinetic gauge transform for large scales
  • 16.1. Background and introduction
  • 16.2. Gyrokinetic theory as a gauge transform
  • 16.3. Gauge transform to get the Lagrangian
  • 16.4. Correspondence among the Lagrangians
  • 16.5. The field Lagrangian
  • 16.6. MHD and MHD equilibrium
  • 16.7. Summary
  • 17. Lie-Poisson bracket for gyrokinetics
  • 17.1. Introduction
  • 17.2. Poisson bracket formulation
  • 17.3. Phase space Jacobian and the four-bracket form
  • 17.4. Setting up a Lie-Poisson functional bracket
  • 17.5. Lie-Poisson brackets for two-dimensional models
  • 17.6. Casimir invariants.