Cargando…

Turbulence and instabilities in magnetised plasmas. Volume 2, Gyrokinetic theory and gyrofluid turbulence /

The second of a two-volume set, this book begins with a review of the concepts behind magnetised plasma turbulence as covered in Volume One. After covering the effects of temperature dynamics, especially heat flux inertia, the rest of the first half reviews classical field theory in the necessary la...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Scott, Bruce D. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2021]
Colección:IOP (Series). Release 21.
IOP series in plasma physics.
IOP ebooks. 2021 collection.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 i 4500
001 IOP_9780750338554
003 IOP
005 20211206101458.0
006 m eo d
007 cr cn |||m|||a
008 211206s2021 enka fob 000 0 eng d
020 |a 9780750338554  |q ebook 
020 |a 9780750338547  |q mobi 
020 |z 9780750338530  |q print 
020 |z 9780750338561  |q myPrint 
024 7 |a 10.1088/978-0-7503-3855-4  |2 doi 
035 |a (CaBNVSL)thg00082863 
035 |a (OCoLC)1288247117 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QC718.5.T8  |b S368 2021eb vol. 2 
072 7 |a PHFP  |2 bicssc 
072 7 |a SCI074000  |2 bisacsh 
082 0 4 |a 530.44  |2 23 
100 1 |a Scott, Bruce D.,  |e author. 
245 1 0 |a Turbulence and instabilities in magnetised plasmas.  |n Volume 2,  |p Gyrokinetic theory and gyrofluid turbulence /  |c Bruce Scott. 
246 3 0 |a Gyrokinetic theory and gyrofluid turbulence. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2021] 
300 |a 1 online resource (various pagings) :  |b illustrations (some color). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release $release] 
490 1 |a IOP series in plasma physics 
490 1 |a IOP ebooks. [2021 collection] 
500 |a "Version: 202111"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Prelude to volume two -- 1.1. Plasma, magnetised, parameters -- 1.2. Low frequency, flute mode ordering -- 1.3. Drifts, ExB flow, currents -- 1.4. Polarisation and quasineutrality -- 1.5. Turbulence -- 1.6. Turbulence in magnetised plasmas -- 1.7. Kinetic theory, turbulence, and MHD instabilities 
505 8 |a 2. Effects of the electron temperature -- 2.1. Introduction--electron temperature -- 2.2. Conservative effects -- 2.3. Dissipative effects -- 2.4. equations for magnetised plasma turbulence -- 2.5. Parameters, normalised equations, geometry -- 2.6. Energetics -- 2.7. Heat flux and kinetic shear Alfvén waves -- 2.8. Drift Alfvén turbulence -- 2.9. Mode structure -- 2.10. Dependence on parameters -- 2.11. Summary 
505 8 |a 3. Effects of the ion temperature -- 3.1. Introduction--ion temperature as independent -- 3.2. The Larmor radius and gyro averaging -- 3.3. Gyroaveraging versus gyroviscosity -- 3.4. Effects on cold ion dynamics -- 3.5. Ion temperature gradient (ITG) modes -- 3.6. Warm-ion toroidal drift Alfvén model -- 3.7. Electromagnetic ITG turbulence in a hot plasma -- 3.8. Warm ion drift Alfvén turbulence -- 3.9. On gyroviscosity -- 3.10. Summary 
505 8 |a 4. Lagrangian field theory and drifts -- 4.1. Low frequency drifts -- 4.2. Lagrangian field theory -- 4.3. Canonical representation -- 4.4. Lagrangian field theory in canonical form -- 4.5. Towards drifts -- 4.6. Quasineutrality -- 4.7. Interlude--Noether's theorem 
505 8 |a 5. Introduction to gyrokinetic theory -- 5.1. Ideas behind the gyrokinetic representation -- 5.2. Lagrangian basis of kinetic theory -- 5.3. The strategy of gyrokinetics -- 5.4. The drift-kinetic Lagrangian -- 5.5. The field variables as perturbations -- 5.6. The Lie transform -- 5.7. The gyroaverage -- 5.8. The gyrocentre phase space density and flow -- 5.9. The gyrokinetic field Lagrangian -- 5.10. Simplified limits 
505 8 |a 6. Phase space and energetic consistency -- 6.1. Summary of ideas -- 6.2. Basic structure of the model -- 6.3. The Euler-Lagrange equations for gyrocentres -- 6.4. Symmetry in gyrocentre dynamics -- 6.5. Application of Noether's theorem -- 6.6. Energy conservation -- 6.7. Momentum conservation -- 6.8. Gyrokinetic drifts -- 6.9. Gyrokinetic energetics -- 6.10. Simplified geometry and the form of the Jacobian 
505 8 |a 7. Gyrokinetic theory for local dynamics -- 7.1. Ideas behind delta-f gyrokinetics -- 7.2. Total-f Lagrangian and energetics -- 7.3. Linearised polarisation -- 7.4. The free energy -- 7.5. Sketch of the delta-f approach -- 7.6. Systematics of the delta-f equations -- 7.7. Delta-f energetics and correspondence -- 7.8. On consistency -- 7.9. The gyroaveraged magnetic field -- 7.10. What happened to momentum 
505 8 |a 8. Gyrokinetic treatment of waves -- 8.1. Introduction -- 8.2. Kinetic responses -- 8.3. Adiabatic drift acoustic wave -- 8.4. Kinetic shear Alfvén wave -- 8.5. Drift-Alfvén wave -- 8.6. Landau damping as thermal conduction -- 8.7. Kinetic resonance--Landau damping -- 8.8. Summary 
505 8 |a 9. Introduction to gyrofluid theory -- 9.1. Introduction -- 9.2. Heuristic gyrofluid 2D turbulence -- 9.3. Heuristic gyrofluid 3D turbulence -- 9.4. Gyrofluid systematics -- 9.5. Gyrofluid energetics -- 9.6. Summary 
505 8 |a 10. Gyrofluid equations for thermal dynamics -- 10.1. Introduction -- 10.2. The gyrofluid model with thermal responses -- 10.3. Collisions in general -- 10.4. Thermal gyrofluid energetics -- 10.5. Correspondence to the fluid model -- 10.6. On usefulness 
505 8 |a 11. Gyrofluid drift-Alfvén turbulence -- 11.1. Introduction--gyrofluid turbulence -- 11.2. Electromagnetic gyrofluid equations -- 11.3. Energetics -- 11.4. ITG turbulence in a hot plasma -- 11.5. Drift Alfvén turbulence in a warm plasma -- 11.6. Thermal anisotropy -- 11.7. Summary 
505 8 |a 12. Electron gyroscale turbulence -- 12.1. Introduction--the gyroscale -- 12.2. Responses below the ion gyroradius -- 12.3. Heuristic 2D electron gyroscale model -- 12.4. ITG and ETG isomorphism -- 12.5. Three-dimensional adiabatic ETG turbulence -- 12.6. The two-scale problem -- 12.7. Summary 
505 8 |a 13. Trapped-electron turbulence -- 13.1. Introduction--magnetic trapping chk -- 13.2. Gyrokinetic Hamiltonian in a system with symmetry -- 13.3. The toroidal precession drift -- 13.4. Single-centre drifts versus gyrokinetics -- 13.5. Trapped electrons as separate species in turbulence -- 13.6. On the kinetic details -- 13.7. Summary 
505 8 |a 14. Turbulence and test particles -- 14.1. Introduction--trace species -- 14.2. A two-dimensional trace species model -- 14.3. A three-dimensional three-species gyrofluid model -- 14.4. Summary 
505 8 |a 15. Current driven MHD instabilities -- 15.1. Introduction -- 15.2. Ideal MHD and the energy principle -- 15.3. Tearing modes and reconnection -- 15.4. Ballooning modes -- 15.5. Kink modes -- 15.6. Mode types not covered -- 15.7. Turbulence in a current channel -- 15.8. Summary 
505 8 |a 16. Gyrokinetic gauge transform for large scales -- 16.1. Background and introduction -- 16.2. Gyrokinetic theory as a gauge transform -- 16.3. Gauge transform to get the Lagrangian -- 16.4. Correspondence among the Lagrangians -- 16.5. The field Lagrangian -- 16.6. MHD and MHD equilibrium -- 16.7. Summary 
505 8 |a 17. Lie-Poisson bracket for gyrokinetics -- 17.1. Introduction -- 17.2. Poisson bracket formulation -- 17.3. Phase space Jacobian and the four-bracket form -- 17.4. Setting up a Lie-Poisson functional bracket -- 17.5. Lie-Poisson brackets for two-dimensional models -- 17.6. Casimir invariants. 
520 3 |a The second of a two-volume set, this book begins with a review of the concepts behind magnetised plasma turbulence as covered in Volume One. After covering the effects of temperature dynamics, especially heat flux inertia, the rest of the first half reviews classical field theory in the necessary language, then builds the gyrokinetic and gyrofluid theory in a systematic and self-consistent manner, with special emphasis on energetic consistency. 
521 |a Graduate students and researchers in plasma fusion. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Bruce Scott is a research plasma physicist having graduated with a Doctorate from the University of Maryland in 1985 and with the German Habilitation from the Heinrich-Heine-Universität Düsseldorf in 2001. He is a Fellow of the American Physical Society with membership since 1979. He has several tens of first author papers in peer reviewed journals in the field of theoretical plasma physics. 
588 0 |a Title from PDF title page (viewed on December 6, 2021). 
650 0 |a Plasma turbulence. 
650 0 |a Plasma instabilities. 
650 0 |a Plasma dynamics. 
650 7 |a Plasma physics.  |2 bicssc 
650 7 |a Plasmas.  |2 bisacsh 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750338530  |z 9780750338561 
830 0 |a IOP (Series).  |p Release 21. 
830 0 |a IOP series in plasma physics. 
830 0 |a IOP ebooks.  |p 2021 collection. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-3855-4  |z Texto completo