Cargando…

Techniques for lithium isotope separation, laser cooling, and scattering /

This book explores the basics of how to construct a laser isotope separation experiment, as well as a laser cooling magneto optical trap. It reviews the basic optics, quantum mechanics and the atom-field equations and rate equations that include the transition probabilities for lithium and rubidium....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Olivares, Ignacio E. (Autor), Carrazana, Patrick (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]
Colección:IOP (Series). Release 22.
IOP series in coherent sources, quantum fundamentals, and applications.
IOP ebooks. 2022 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. History of our laser experiments
  • 1.1. Laser isotope separation laboratory
  • 1.2. Laser and optics laboratory
  • 1.3. Teaching laboratory : Experimental Physics V
  • 1.4. Advanced laboratory
  • 1.5. Summary
  • 2. Saturated absorption spectroscopy
  • 2.1. Description of saturated absorption spectroscopy
  • 2.2. Multi-level atoms
  • 2.3. The saturated absorption spectrometer
  • 2.4. Semiquantitative ideas at two-level atoms
  • 2.5. Energy level diagram
  • 3. Optical instrumentation and detection
  • 3.1. Geometrical optics
  • 3.2. Interference
  • 3.3. Polarization of light
  • 3.4. Linear polarizer and Malus law
  • 3.5. The Brewster angle
  • 4. Vapor generation and vacuum
  • 4.1. Lithium isotope separation hardware
  • 4.2. Preparing the vacuum for laser cooling
  • 5. Diode laser characteristics
  • 5.1. Littrow grating diode laser cavity
  • 5.2. Principles of operation of the grazing-incidence grating diode laser cavity
  • 5.3. Nd:YAG laser
  • 6. Lithium Doppler-free absorption spectroscopy
  • 6.1. Introduction
  • 6.2. Experiment
  • 6.3. Results
  • 6.4. Conclusion
  • 7. Lithium Doppler-limited absorption spectroscopy
  • 7.1. Introduction
  • 7.2. Background
  • 7.3. Experiment
  • 7.4. Results
  • 7.5. Discussions and conclusions
  • 8. Rubidium absorption spectroscopy
  • 8.1. Introduction
  • 8.2. Background
  • 8.3. Experiment
  • 8.4. Results
  • 8.5. Discussion and conclusion
  • 8.6. Transitions
  • 9. Lithium resonance ionization spectroscopy
  • 9.1. Introduction
  • 9.2. Background
  • 9.3. Experiment
  • 9.4. Results
  • 9.5. Discussion and conclusion
  • 10. Lithium isotope separation
  • 10.1. Introduction
  • 10.2. Background
  • 10.3. Lithium isotope separation experimental setup
  • 10.4. Laser system
  • 10.5. Isotope separation apparatus
  • 10.6. Experimental overview
  • 10.7. Results
  • 10.8. Discussion and conclusion
  • 11. Laser cooling
  • 11.1. The pump and the probe laser
  • 11.2. Energy level diagram-laser cooling
  • 11.3. Finding the spectral lines for repumping and cooling laser
  • 11.4. Description of the Pound-Drever-Hall method for frequency stability of the pump and probe lasers
  • 11.5. Installing the MOT optics
  • 11.6. Polarizing optics : left and right circulating light
  • 11.7. Anti-Helmholtz coils : magneto optical trap
  • 11.8. Observation of the cloud with NIR camera
  • 11.9. Analog control of laser intensities with a Glan-Thompson polarizer
  • 11.10. Results
  • 11.11. Discussion
  • 12. Mie scattering
  • 12.1. Introduction
  • 12.2. Theory
  • 12.3. Experiment
  • 12.4. Results
  • 12.5. Discussion and conclusions
  • 13. Thomson scattering
  • 13.1. Introduction
  • 13.2. Theory
  • 13.3. Thomson scattering experiment
  • 13.4. Results
  • 13.5. Conclusion
  • 14. Thomson scattering with impurities
  • 14.1. Introduction
  • 14.2. Different kind of ions in plasma
  • 14.3. Experiment
  • 14.4. Results : Thomson scattering spectra with impurity ions
  • 14.5. Conclusion.