Quantum chemistry : a concise introduction for students of physics, chemistry, biochemistry and materials science /
This book provides non-specialists with a basic understanding of the underlying concepts of quantum chemistry. It is both a text for second- or third-year undergraduates and a reference for researchers who need a quick introduction or refresher. All chemists and many biochemists, materials scientist...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2021]
|
Edición: | Third edition. |
Colección: | IOP (Series). Release 21.
IOP ebooks. 2021 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Molecular symmetry
- 1.1. Symmetry operations and elements
- 1.2. How to classify molecules by symmetry?
- 1.3. Implications of symmetry
- 2. Basic quantum mechanics
- 2.1. Wave functions specify a system's state
- 2.2. Operators represent observables
- 2.3. Schrödinger's equation
- 2.4. Measured and average values
- 3. Translation and vibration
- 3.1. A particle in a wire
- 3.2. A harmonic oscillator
- 4. Symmetry and degeneracy
- 4.1. A particle in a rectangular plate
- 4.2. Symmetry leads to degeneracy
- 4.3. Probabilities in degenerate states
- 4.4. Are degenerate wave functions unique?
- 4.5. Symmetry of wave functions
- 5. Rotational motion
- 5.1. A particle on a ring
- 5.2. A particle on a sphere
- 5.3. The rigid rotor model
- 6. Electronic motion : the hydrogen atom
- 6.1. The clamped nucleus approximation
- 6.2. Atomic units and the electronic Hamiltonian
- 6.3. The hydrogen atom
- 6.4. Hydrogen-like ions
- 6.5. Perturbation theory
- 7. A molecular prototype : the hydrogen molecular-ion
- 7.1. Introduction
- 7.2. The LCAO model
- 7.3. LCAO potential energy curves
- 7.4. The variation method
- 7.5. Beyond the LCAO model
- 7.6. Vibrational force constant and dissociation energy
- 7.7. Lessons for other molecules
- 8. A mean field model for many-electron systems
- 8.1. The helium atom
- 8.2. Spin and the Pauli postulate
- 8.3. Electron densities
- 8.4. The Hartree-Fock model : assumptions and equations
- 8.5. Atoms
- 8.6. Diatomic molecules
- 8.7. Limitations of the Hartree-Fock model
- 9. The Hückel model
- 9.1. The Hückel model : assumptions and equations
- 9.2. Nonbranched chains
- 9.3. Monocyclic rings
- 9.4. Other planar conjugated hydrocarbons
- 9.5. Charges, bond orders, and reactivity
- 9.6. The Hückel model is not quantitative
- 10. Handling electron correlation
- 10.1. Electron correlation in two-electron systems
- 10.2. Post-Hartree-Fock methods
- 10.3. The Kohn-Sham model
- 11. Computational quantum chemistry
- 11.1. Everyone does computations now
- 11.2. Practical calculations
- 11.3. Selecting a basis set
- 11.4. KS-DFT calculations
- 11.5. Potential energy surfaces and properties
- Appendices. Appendix A. Systems with time-independent potentials
- Appendix B. Perturbation theory
- Appendix C. Solving matrix Hartree-Fock equations
- Appendix D. Reference material
- Appendix E. Problem hints and solutions
- Appendix F. Resources for study and exploration.