Physics of the Lorentz group /
This book explains the Lorentz group in a language familiar to physicists, namely in terms of two-by-two matrices. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group applicable to the four-dimensional Minkowski space is still very stran...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2021]
|
Edición: | Second edition. |
Colección: | IOP (Series). Release 21.
IOP ebooks. 2021 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Lorentz group and its representations
- 1.1. Generators of the Lorentz group
- 1.2. Two-by-two representation of the Lorentz group
- 1.3. Conformal representation of the Lorentz group
- 1.4. Representations of the Poincaré group
- 1.5. Representations of the Lorentz group based on harmonic oscillators
- 1.6. Wigner functions for the Lorentz group
- 2. Wigner's little groups for internal space-time symmetries
- 2.1. Euler decomposition of Wigner's little group
- 2.2. O(3)-like little group for massive particles
- 2.3. E(2)-like little group for massless particles
- 2.4. O(2, 1)-like little group for imaginary-mass particles
- 2.5. Further properties of Wigner's little groups
- 2.6. Little groups in the light-cone coordinate system
- 3. Group contractions
- 3.1. Contraction with squeeze transformations
- 3.2. Contractions of the O(3) rotation group
- 3.3. Contraction of the O(2, 1) Lorentz group
- 3.4. Contraction of the Lorentz group
- 3.5. Tangential spheres
- 4. Two-by-two representations of Wigner's little groups
- 4.1. Transformation properties of the energy-momentum four-vector
- 4.2. Two-by-two representations of Wigner's little groups
- 4.3. Lorentz completion of the little groups
- 4.4. Bargmann and Wigner decompositions
- 4.5. Conjugate transformations
- 4.6. One little group with three branches
- 4.7. Classical damped harmonic oscillator
- 5. Relativistic spinors and polarization of photons and neutrinos
- 5.1. Two-component spinors
- 5.2. Massive and massless particles
- 5.3. Dirac spinors and massless particles
- 5.4. Polarization of massless neutrinos
- 5.5. Scalars, vectors, tensors, and the polarization of photons
- 6. Lorentz-covariant harmonic oscillators
- 6.1. Dirac's plan to construct Lorentz-covariant quantum mechanics
- 6.2. Dirac's forms of relativistic dynamics
- 6.3. Running waves and standing waves
- 6.4. Little groups for relativistic extended particles
- 6.5. Further properties of covariant oscillator wave functions
- 6.6. Lorentz contraction of harmonic oscillators
- 6.7. Feynman's rest of the Universe
- 7. Quarks and partons in the Lorentz-covariant world
- 7.1. Lorentz-covariant quark model
- 7.2. Feynman's parton picture
- 7.3. Proton structure function
- 7.4. Proton form factor and Lorentz coherence
- 7.5. Coherence in energy-momentum space
- 7.6. Hadronic temperature and boiling quarks
- 8. Wigner functions and their symmetries
- 8.1. Symmetries and the uncertainty principle in the Wigner phase space
- 8.2. Four-dimensional phase space
- 8.3. Canonical transformations
- 8.4. SL(4, r) symmetry
- 8.5. Dirac matrices for O(3, 3)
- 8.6. O(3, 3) symmetry
- 9. Coupled harmonic oscillators and squeezed states of light
- 9.1. Coupled oscillators
- 9.2. Lorentz-covariant oscillators
- 9.3. Squeezed states of light
- 9.4. Further notes on squeezed states
- 9.5. O(3, 2) symmetry from Dirac's coupled oscillators
- 9.6. Canonical and non-canonical transformations from the coupled oscillators
- 9.7. Entropy and the expanding Wigner phase space
- 10. Special relativity from quantum mechanics?
- 10.1. Definition of the problem
- 10.2. Symmetries of the single oscillator
- 10.3. Symmetries from two oscillators
- 10.4. Contraction of O(3, 2) to the inhomogeneous Lorentz group
- 11. Lorentz group in ray optics
- 11.1. The group of ABCD matrices applied to ray optics
- 11.2. Equi-diagonalization of the ABCD matrix
- 11.3. Decomposition of the ABCD matrix
- 11.4. Laser cavities
- 11.5. Composition of lens and translation matrices
- 11.6. Optical beam propagation through multilayers
- 11.7. Camera optics
- 12. Polarization optics
- 12.1. Jones vectors
- 12.2. Squeeze transformation and phase shift
- 12.3. Rotation of the polarization axes
- 12.4. The SL(2, c) group content of polarization optics
- 12.5. Optical activities
- 12.6. Correspondence to space-time symmetries
- 12.7. More optical filters from E(2)-like groups
- 13. Poincaré sphere
- 13.1. Decoherence in polarization optics
- 13.2. Coherency matrix
- 13.3. Poincaré sphere
- 13.4. Two concentric Poincaré spheres
- 13.5. Symmetries derivable from the Poincaré sphere
- 13.6. O(3, 2) symmetry for energy couplings
- 13.7. Entropy problem
- Appendix A. Physics as art of synthesis
- A.1. Illustration of Hume, Kant, and Hegel
- A.2. Kant and Einstein
- A.3. Kantianism and Taoism
- A.4. Einstein and Hegel.