Classical field theory and the stress-energy tensor /
Classical Field Theory and the Stress-Energy Tensor (Second Edition) is an introduction to classical field theory and the mathematics required to formulate and analyze it.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2022]
|
Edición: | Second edition. |
Colección: | IOP (Series). Release 22.
IOP ebooks. 2022 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Geometry and physics
- 1.1. Manifolds
- 1.2. Coordinate systems
- 1.3. The Jacobian
- 1.4. Contravariant and covariant quantities
- 1.5. The summation convention
- 1.6. Vectors and direction vectors
- 1.7. Vector addition and the scalar product
- 1.8. The metric tensor and distance in manifolds
- 1.9. The metric tensor and raising and lowering indices
- 1.10. General tensors and tensor densities
- 1.11. Trajectories and tangent spaces
- 1.12. The vector product
- 1.13. The gradient
- 1.14. The divergence, the Laplacian, and the curl
- 1.15. Differential forms and the wedge product
- 1.16. Differential forms and Stokes' theorem
- 1.17. The Lie derivative
- 2. Newtonian mechanics and functional methods
- 2.1. Newton's second law
- 2.2. Newtonian trajectories and tangent vectors
- 2.3. Newton's first law and Galilean relativity
- 2.4. Functionals and the calculus of variations
- 2.5. The action approach to Newtonian mechanics
- 3. Basic field theory
- 3.1. The mechanical properties of a stretched string
- 3.2. The stretched string as a field theory
- 3.3. The Euler-Lagrange equation for the stretched string
- 3.4. Solving the Euler-Lagrange equation
- 3.5. Galilean relativity and wave solutions
- 3.6. Momentum and energy in field theories
- 3.7. The stress-energy tensor
- 3.8. Static sources and Green's function techniques
- 3.9. The catenary, the Beltrami identity, and constraints
- 3.10. Functional derivatives and Poisson brackets
- 4. Newtonian fluid dynamics
- 4.1. Fluid flow from Newtonian physics
- 4.2. The equation of continuity
- 4.3. Viscosity
- 4.4. The Navier-Stokes equation and the stress-energy tensor
- 4.5. Basic solutions to the Navier-Stokes equation
- 4.6. Homentropic flow
- 4.7. The action formulation for homentropic flow
- 4.8. The homentropic stress-energy tensor
- 4.9. The symmetric fluid stress-energy tensor
- 4.10. Fluctuations around solutions and stability
- 4.11. Spherical sound waves, power, and the Doppler effect
- 5. Galilean covariant complex fields
- 5.1. The complex classical nonrelativistic field
- 5.2. The Euler-Lagrange equation and its solutions
- 5.3. Symmetries of the Lagrangian
- 5.4. Galilean covariance
- 5.5. Complex analysis and Cauchy's theorem
- 5.6. Scattering and the Dirac delta potential
- 5.7. Bose-Einstein condensation
- 5.8. Condensate fluctuations
- 5.9. Vortices and the healing length
- 6. Basic special relativity
- 6.1. Maxwell's equations
- 6.2. The problem with electromagnetic waves
- 6.3. Lorentz transformations
- 6.4. Observational effects of special relativity
- 6.5. The Minkowski metric and space-time
- 6.6. Relativistic energy and momentum
- 6.7. Proper velocity and accelerated motion
- 6.8. Relativistic action in the presence of force
- 6.9. Relativistic quantities
- 7. Linear algebra and group theory
- 7.1. Linear algebra and matrices
- 7.2. Basic group theory
- 7.3. SO (3,1) and the Lorentz group
- 7.4. Spinor representations of the Lorentz group
- 8. Scalar and spinor field theories
- 8.1. Classical point particles
- 8.2. Lorentz invariant actions
- 8.3. Relativistic scalar field theory
- 8.4. Classical scalar solutions and broken symmetry
- 8.5. Relativistic spinor fields and quadratic actions
- 8.6. Symmetry and conservation laws
- 9. Classical relativistic electrodynamics
- 9.1. Aspects of Maxwell's equations
- 9.2. The Helmholtz decomposition and the Coulomb potential
- 9.3. The field strength tensor
- 9.4. Electromagnetic fields and the gauge field
- 9.5. Gauge transformations and gauge conditions
- 9.6. Natural units
- 9.7. The gauge field action and minimal coupling
- 9.8. Relativistic point charges and electromagnetic interactions
- 9.9. The stress-energy tensor and electrodynamics
- 9.10. Angular momentum for gauge and spinor fields
- 9.11. Electromagnetic waves and spin
- 9.12. The Proca field
- 9.13. Green's functions and electromagnetic radiation
- 9.14. The gauge field as a differential form
- 9.15. Magnetic monopoles
- 10. General relativity and gravitation
- 10.1. The metric tensor and Einstein's principle of equivalence
- 10.2. The affine connection and the covariant derivative
- 10.3. The curvature tensor
- 10.4. The connection and curvature in differential geometry
- 10.5. Variational techniques in general relativity
- 10.6. The generalized stress-energy tensor
- 10.7. Einstein's field equation
- 10.8. Vacuum solutions to Einstein's equation
- 10.9. Kaluza-Klein theory
- 10.10. Basic cosmology
- 11. Yang-Mills fields and connections
- 11.1. Unitary symmetry and isospin
- 11.2. Nonabelian gauge fields
- 11.3. The Yang-Mills stress-energy tensor and force equation
- 11.4. Spontaneous breakdown of symmetry
- 11.5. Aspects of classical solutions for Yang-Mills fields
- 11.6. Yang-Mills fields, forms, and connections
- 11.7. Spinor fields in general relativity
- 11.8. Yang-Mills fields and the Gribov instability
- 11.9. Classical string theory.