Cargando…

Classical field theory and the stress-energy tensor /

Classical Field Theory and the Stress-Energy Tensor (Second Edition) is an introduction to classical field theory and the mathematics required to formulate and analyze it.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Swanson, Mark S., 1947- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]
Edición:Second edition.
Colección:IOP (Series). Release 22.
IOP ebooks. 2022 collection.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 i 4500
001 IOP_9780750334556
003 IOP
005 20220501101458.0
006 m eo d
007 cr bn |||m|||a
008 220501s2022 enka fob 000 0 eng d
020 |a 9780750334556  |q ebook 
020 |a 9780750334549  |q mobi 
020 |z 9780750334532  |q print 
020 |z 9780750334563  |q myPrint 
024 7 |a 10.1088/978-0-7503-3455-6  |2 doi 
035 |a (CaBNVSL)thg00083255 
035 |a (OCoLC)1319735946 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QC173.7  |b .S833 2022eb 
072 7 |a PH  |2 bicssc 
072 7 |a SCI055000  |2 bisacsh 
082 0 4 |a 530.14  |2 23 
100 1 |a Swanson, Mark S.,  |d 1947-  |e author. 
245 1 0 |a Classical field theory and the stress-energy tensor /  |c Mark S. Swanson. 
250 |a Second edition. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2022] 
300 |a 1 online resource (various pagings) :  |b illustrations. 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release $release] 
490 1 |a IOP ebooks. [2022 collection] 
500 |a "Version: 20220401"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Geometry and physics -- 1.1. Manifolds -- 1.2. Coordinate systems -- 1.3. The Jacobian -- 1.4. Contravariant and covariant quantities -- 1.5. The summation convention -- 1.6. Vectors and direction vectors -- 1.7. Vector addition and the scalar product -- 1.8. The metric tensor and distance in manifolds -- 1.9. The metric tensor and raising and lowering indices -- 1.10. General tensors and tensor densities -- 1.11. Trajectories and tangent spaces -- 1.12. The vector product -- 1.13. The gradient -- 1.14. The divergence, the Laplacian, and the curl -- 1.15. Differential forms and the wedge product -- 1.16. Differential forms and Stokes' theorem -- 1.17. The Lie derivative 
505 8 |a 2. Newtonian mechanics and functional methods -- 2.1. Newton's second law -- 2.2. Newtonian trajectories and tangent vectors -- 2.3. Newton's first law and Galilean relativity -- 2.4. Functionals and the calculus of variations -- 2.5. The action approach to Newtonian mechanics 
505 8 |a 3. Basic field theory -- 3.1. The mechanical properties of a stretched string -- 3.2. The stretched string as a field theory -- 3.3. The Euler-Lagrange equation for the stretched string -- 3.4. Solving the Euler-Lagrange equation -- 3.5. Galilean relativity and wave solutions -- 3.6. Momentum and energy in field theories -- 3.7. The stress-energy tensor -- 3.8. Static sources and Green's function techniques -- 3.9. The catenary, the Beltrami identity, and constraints -- 3.10. Functional derivatives and Poisson brackets 
505 8 |a 4. Newtonian fluid dynamics -- 4.1. Fluid flow from Newtonian physics -- 4.2. The equation of continuity -- 4.3. Viscosity -- 4.4. The Navier-Stokes equation and the stress-energy tensor -- 4.5. Basic solutions to the Navier-Stokes equation -- 4.6. Homentropic flow -- 4.7. The action formulation for homentropic flow -- 4.8. The homentropic stress-energy tensor -- 4.9. The symmetric fluid stress-energy tensor -- 4.10. Fluctuations around solutions and stability -- 4.11. Spherical sound waves, power, and the Doppler effect 
505 8 |a 5. Galilean covariant complex fields -- 5.1. The complex classical nonrelativistic field -- 5.2. The Euler-Lagrange equation and its solutions -- 5.3. Symmetries of the Lagrangian -- 5.4. Galilean covariance -- 5.5. Complex analysis and Cauchy's theorem -- 5.6. Scattering and the Dirac delta potential -- 5.7. Bose-Einstein condensation -- 5.8. Condensate fluctuations -- 5.9. Vortices and the healing length 
505 8 |a 6. Basic special relativity -- 6.1. Maxwell's equations -- 6.2. The problem with electromagnetic waves -- 6.3. Lorentz transformations -- 6.4. Observational effects of special relativity -- 6.5. The Minkowski metric and space-time -- 6.6. Relativistic energy and momentum -- 6.7. Proper velocity and accelerated motion -- 6.8. Relativistic action in the presence of force -- 6.9. Relativistic quantities 
505 8 |a 7. Linear algebra and group theory -- 7.1. Linear algebra and matrices -- 7.2. Basic group theory -- 7.3. SO (3,1) and the Lorentz group -- 7.4. Spinor representations of the Lorentz group 
505 8 |a 8. Scalar and spinor field theories -- 8.1. Classical point particles -- 8.2. Lorentz invariant actions -- 8.3. Relativistic scalar field theory -- 8.4. Classical scalar solutions and broken symmetry -- 8.5. Relativistic spinor fields and quadratic actions -- 8.6. Symmetry and conservation laws 
505 8 |a 9. Classical relativistic electrodynamics -- 9.1. Aspects of Maxwell's equations -- 9.2. The Helmholtz decomposition and the Coulomb potential -- 9.3. The field strength tensor -- 9.4. Electromagnetic fields and the gauge field -- 9.5. Gauge transformations and gauge conditions -- 9.6. Natural units -- 9.7. The gauge field action and minimal coupling -- 9.8. Relativistic point charges and electromagnetic interactions -- 9.9. The stress-energy tensor and electrodynamics -- 9.10. Angular momentum for gauge and spinor fields -- 9.11. Electromagnetic waves and spin -- 9.12. The Proca field -- 9.13. Green's functions and electromagnetic radiation -- 9.14. The gauge field as a differential form -- 9.15. Magnetic monopoles 
505 8 |a 10. General relativity and gravitation -- 10.1. The metric tensor and Einstein's principle of equivalence -- 10.2. The affine connection and the covariant derivative -- 10.3. The curvature tensor -- 10.4. The connection and curvature in differential geometry -- 10.5. Variational techniques in general relativity -- 10.6. The generalized stress-energy tensor -- 10.7. Einstein's field equation -- 10.8. Vacuum solutions to Einstein's equation -- 10.9. Kaluza-Klein theory -- 10.10. Basic cosmology 
505 8 |a 11. Yang-Mills fields and connections -- 11.1. Unitary symmetry and isospin -- 11.2. Nonabelian gauge fields -- 11.3. The Yang-Mills stress-energy tensor and force equation -- 11.4. Spontaneous breakdown of symmetry -- 11.5. Aspects of classical solutions for Yang-Mills fields -- 11.6. Yang-Mills fields, forms, and connections -- 11.7. Spinor fields in general relativity -- 11.8. Yang-Mills fields and the Gribov instability -- 11.9. Classical string theory. 
520 3 |a Classical Field Theory and the Stress-Energy Tensor (Second Edition) is an introduction to classical field theory and the mathematics required to formulate and analyze it. 
521 |a Advanced undergraduate and graduate level physics courses. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Mark Swanson is currently Emeritus Professor of Physics at the University of Connecticut and lives in Monroe, Connecticut. 
588 0 |a Title from PDF title page (viewed on May 8, 2022). 
650 0 |a Field theory (Physics) 
650 7 |a Physics.  |2 bicssc 
650 7 |a Classical physics.  |2 bisacsh 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750334532 
830 0 |a IOP (Series).  |p Release 22. 
830 0 |a IOP ebooks.  |p 2022 collection. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-3455-6  |z Texto completo