Cargando…

Quantum entanglement engineering and applications /

Quantum entanglement (QE) is one of the most, if not the most, mysterious, and yet most promising subjects of current physics. With applications in cryptographic space-to-space, space-to-earth, and fiber communications, in addition to teleportation and quantum computing, QE goes beyond fascination a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Duarte, F. J. (Frank J.) (Autor), Taylor, Travis S. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2021]
Colección:IOP (Series). Release 21.
IOP series in coherent sources, quantum fundamentals, and applications.
IOP ebooks. 2021 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction
  • 1.1. Introduction
  • 1.2. Essentials of quantum mechanics
  • 1.3. Ward's succinct perspectives
  • 1.4. The philosophy and the physics of quantum entanglement
  • 1.5. Quantum entanglement as a discipline
  • 1.6. Quantum entanglement engineering and applications
  • 1.7. Intent
  • 2. Dirac's notation for quantum entanglement
  • 2.1. Introduction
  • 2.2. Dirac's bra ket notation
  • 2.3. Dirac's notation in N-slit interferometers
  • 2.4. Semi coherent interference
  • 2.5. Expanded series of N-slit quantum interference probabilities
  • 2.6. From quantum probabilities to measurable intensities
  • 2.7. Dirac's identities
  • 2.8. Quantum entanglement probability amplitudes for n = N = 2
  • 2.9. Quantum entanglement probability amplitude for n = N = 4
  • 2.10. Quantum entanglement probability amplitudes for n = N = 8
  • 2.11. Quantum entanglement probability amplitudes for n = N = 16
  • 2.12. Quantum entanglement probability amplitudes for n = N = 21, 22, 23, 24, ..., 2r
  • 2.13. Quantum entanglement probability amplitudes for n = N = 3
  • 2.14. Quantum entanglement probability amplitudes for n = N = 6
  • 2.15. Beyond single quanta-pair quantum entanglement
  • 2.16. Discussion
  • 3. Indistinguishability
  • 3.1. Introduction
  • 3.2. Indistinguishability in quantum interference
  • 3.3. Indistinguishability in Dirac's identities
  • 3.4. Indistinguishability in quantum entanglement
  • 3.5. Indistinguishability in quanta ensembles
  • 3.6. Discussion
  • 4. Quantum interferometry via Dirac's bra ket notation
  • 4.1. Introduction
  • 4.2. The N-slit interferometer
  • 4.3. Interferometers configured by beam splitters
  • 4.4. Beam-splitter matrices and Dirac's bra ket notation
  • 4.5. Revisiting the single-beam splitter
  • 5. Vectors, matrices, and tensors for quantum entanglement
  • 5.1. Introduction
  • 5.2. Vector basics
  • 5.3. Vector products
  • 5.4. Matrix algebra
  • 5.5. The Pauli matrices
  • 5.6. Unitary matrices
  • 5.7. The tensor product
  • 6. Five avenues to the probability amplitude of quantum entanglement
  • 6.1. Introduction
  • 6.2. Ward's heuristic derivation
  • 6.3. Quantum entanglement from Feynman's two-state approach
  • 6.4. Quantum entanglement from N-slit interference
  • 6.5. Quantum entanglement from the Pauli matrices
  • 6.6. Quantum entanglement from the Hadamard gate
  • 6.7. Quantum interference or quantum entanglement?
  • 7. Quantum entanglement in matrix notation
  • 7.1. Introduction
  • 7.2. Quantum entanglement probability amplitudes
  • 7.3. From ket vectors to polarization matrices
  • 7.4. The Pauli matrices and quantum entanglement
  • 7.5. The Hadamard matrix
  • 7.6. Optical matrices based on the probability amplitudes of quantum entanglement
  • 7.7. Polarization rotators for quantum entanglement
  • 7.8. Quantum operations with polarization rotators
  • 7.9. Quantum operations with the Hadamard gate
  • 8. Quantum entanglement applications
  • 8.1. Introduction
  • 8.2. Classical cryptography concepts
  • 8.3. Quantum entanglement applications to cryptography
  • 8.4. Quantum entanglement applications to teleportation
  • 8.5. Quantum computing
  • 8.6. Quantum entanglement applications to metrology
  • 8.7. Overview
  • 9. Space-to-space quantum communications
  • 9.1. Introduction
  • 9.2. Satellite engineering parameters
  • 9.3. Beam divergence
  • 9.4. Optical configuration for quantum satellite communications
  • 9.5. Existing data from experiments on quantum satellite communications
  • 9.6. Satellite networks and their dependence on entangled photon source characteristics
  • 9.7. Sources for quantum entanglement communications
  • 9.8. Outlook
  • 10. Quantum entanglement and the interpretations of quantum mechanics
  • 10.1. Introduction
  • 10.2. Many alternative interpretations
  • 10.3. Guidance from quantum titans
  • 10.4. Hidden variable theories
  • 10.5. A pragmatic perspective on the interpretations of quantum mechanics
  • 10.6. Quantum principles
  • 10.7. Quantum measurements
  • 10.8. Is quantum entanglement the essence of quantum mechanics?
  • 10.9. On the origin of the Dirac-Feynman principle
  • 10.10. Quantum pragmatism free of paradoxes
  • Appendix A. More on Dirac's notation : application to laser cavities and interference.