Key methods and concepts in condensed matter physics : Green's functions and real space renormalization group /
This book aims to present a concise introduction, for graduate students and researchers, to powerful techniques and important concepts in condensed matter physics. Key conceptual elements include the fluctuation-dissipation theorem, the theory of critical phenomena (both classical and quantum) and t...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2021]
|
Colección: | IOP (Series). Release 21.
IOP ebooks. 2021 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. The fluctuation-dissipation theorem
- 1.1. Introduction
- 1.2. Linear response theory
- 1.3. Fluctuation-dissipation theorem
- 2. Green's function method
- 2.1. Green's functions and correlations
- 2.2. Spin-waves in ferromagnets
- 2.3. Critical exponents
- 3. Perturbative method for Green's functions
- 3.1. Time independent perturbations
- 3.2. Time dependent perturbations
- 4. Green's functions and disorder
- 4.1. Configuration averaged Green's function
- 4.2. Spin wave propagation in disordered media as a random frequency modulation problem
- 4.3. The infinite range ferromagnet
- 4.4. The infinite range random Heisenberg ferromagnet
- 4.5. Appendix
- 5. Real space renormalization group
- 5.1. Phase transitions and the renormalization group
- 5.2. Bond percolation in a square lattice
- 5.3. Hierarchical lattices
- 5.4. The Ising model
- 5.5. Ising ferromagnet in a magnetic field
- 5.6. First order phase transitions
- 6. Real space renormalization group : quantum systems
- 6.1. Quantum systems
- 6.2. The free energy
- 6.3. A simpler approach
- 6.4. Quantum phase transitions
- 7. Disordered systems
- 7.1. Introduction
- 7.2. Random field models
- 7.3. Random spin chains
- 7.4. Anderson localization
- 8. Topological systems
- 8.1. Introduction
- 8.2. One-dimensional Ising model in a transverse field revisited
- 8.3. The Su-Schriefer-Heeger model
- 8.4. Bulk-boundary correspondence
- 8.5. Spinor representation of the SSH model
- 8.6. Topological invariant for odd d-dimensional systems with chiral symmetry.