Cargando…

Image-guided radiation therapy : physics and technology /

This book provides the reader with an in-depth knowledge of physics principles and technology of image-guided radiotherapy (IGRT) that is changing the way radiotherapy is practiced.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ravindran, B. Paul (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]
Colección:IOP (Series). Release 22.
IPEM-IOP series in physics and engineering in medicine and biology.
IOP ebooks. 2022 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction and historical perspective
  • 1.1. Principle of radiotherapy
  • 1.2. Methods of radiotherapy delivery
  • 1.3. The need for imaging in radiotherapy
  • 1.4. Non-radiological image guidance systems
  • 1.5. The advantages of IGRT
  • 2. Two-dimensional (2D) off-line image guidance in radiation therapy
  • 2.1. Radiographic film for image guidance
  • 2.2. Computed radiography for image guidance
  • 2.3. Advantages in the use of CR for portal imaging
  • 2.4. Summary
  • 3. Electronic portal imaging devices
  • 3.1. Introduction
  • 3.2. Video camera-based EPID
  • 3.3. Fibre optic-based EPID
  • 3.4. Liquid ion chamber-based EPID
  • 3.5. Active-matrix, flat-panel imager (AMFPI)-based EPIDs
  • 3.6. Clinical use of EPID
  • 3.7. Summary
  • 4. Two-dimensional (2D) kilovoltage image guidance systems
  • 4.1. Kilovoltage (kV) x-ray-based stereoscopic imaging system
  • 4.2. Gantry-mounted two-dimensional kV IGRT systems
  • 4.3. Summary
  • 5. Volumetric radiological image guidance systems
  • 5.1. Introduction
  • 5.2. CT on rails (in-room CT)
  • 5.3. Tomotherapy
  • 5.4. CBCT-based image guidance
  • 5.5. Halcyon unit
  • 5.6. kV CBCT-based IGRT
  • 5.7. Image registration
  • 5.8. Clinical applications of 3D image guidance
  • 5.9. Summary
  • 6. Commissioning, quality assurance and dose during IGRT
  • 6.1. Introduction
  • 6.2. Quality assurance program requirements
  • 6.3. Commissioning and quality assurance of EPID
  • 6.4. Commissioning and quality assurance of the stereoscopic imaging system
  • 6.5. Commissioning and quality assurance of CT on-rails IGRT system
  • 6.6. Commissioning and quality assurance of the TomoTherapy
  • 6.7. Halcyon IGRT unit
  • 6.8. Gantry mounted kV x-ray based planar and CBCT imaging system
  • 6.9. Dose during image guidance
  • 6.10. Summary
  • 7. US for image guidance in external beam radiation therapy
  • 7.1. Introduction
  • 7.2. Physics of US imaging
  • 7.3. US frequency
  • 7.4. Scanning modes
  • 7.5. US imaging techniques
  • 7.6. Three-dimensional (3D) US imaging
  • 7.7. US-based commercial IGRT systems
  • 7.8. Workflow for inter-fraction and intra-fraction US imaging
  • 7.9. Commissioning and quality assurance of a US-based IGRT system
  • 7.10. Advantages of a US IGRT system
  • 7.11. Challenges in the use of US system for IGRT
  • 7.12. Summary
  • 8. Magnetic resonance image-guided radiotherapy (MRIgRT)
  • 8.1. Introduction
  • 8.2. Physics of MRI
  • 8.3. The challenges in integrating MRI to a linac for image guidance
  • 8.4. MRIgRT systems
  • 8.5. Summary
  • 9. Optical surface scanning : surface-guided radiotherapy (SGRT)
  • 9.1. The science behind surface guidance
  • 9.2. Clinical SGRT systems
  • 9.3. The AlignRT system
  • 9.4. The Catalyst(Tm)/Sentinel(Tm) system
  • 9.5. Advantages of SGRT
  • 9.6. Limitations of surface tracking systems
  • 9.7. Summary.