A multidisciplinary approach to quantum field theory. Volume 2, Advanced topics /
Quantum field theory is the theory of many-particle quantum systems. Just as quantum mechanics describes a single particle as both a particle and a wave, quantum field theory describes many-particle systems in terms of both particles and fields.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2022]
|
Colección: | IOP (Series). Release 22.
IOP ebooks. 2022 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Gauge theories
- 1.1. Introduction to quantum electrodynamics
- 1.2. Abelian gauge invariance
- 1.3. Perturbative calculations at tree level in QED
- 1.4. Renormalization of QED
- 1.5. Compact Lie groups
- 1.6. Non-Abelian gauge theories
- 1.7. The Faddeev-Popov ansatz and gauge fixing for non-Abelian gauge theories
- 1.8. The geometry of gauge fields
- 1.9. Gauge fields compared to gravity
- 1.10. The Feynman rules for non-Abelian gauge theories
- 1.11. The Higgs mechanism
- 2. The renormalization group
- 2.1. Introduction
- 2.2. The Ising model
- 2.3. The order parameter and Landau theory
- 2.4. Critical exponents
- 2.5. The real-space renormalization group
- 2.6. Euclidean field theory
- 2.7. Derivation of the renormalization group equations : [phi]4
- 2.8. The Wilson-Fisher fixed point
- 2.9. The effective action
- 2.10. Background field method for scalar field theories
- 2.11. The background field method for gauge theories
- Appendix. Simulation and the Metropolis algorithm
- 3. The 1/N expansion
- 3.1. Introduction
- 3.2. Quantum mechanics
- 3.3. Vector models in quantum mechanics
- 3.4. Vector models in quantum field theory
- 3.5. Matrix models in the large-N limit
- 4. Solitons and instantons
- 4.1. Introduction
- 4.2. The [phi]4 kink in 1 + 1 dimensions
- 4.3. Flux tubes
- 4.4. Magnetic monopoles
- 4.5. Instantons
- 4.6. False vacuum decay
- 5. Anomalies
- 5.1. Introduction
- 5.2. Path integral treatment of anomalies
- 5.3. Anomaly cancellation in gauge theories
- 5.4. The [eta][prime] problem and the U(1)A anomaly in QCD
- 6. Field theory at nonzero temperature
- 6.1. Introduction
- 6.2. Partition functions and path integrals
- 6.3. Free fields and Matsubara frequencies
- 6.4. Evaluation of the T [not equal to] 0 scalar field effective potential
- 6.5. Symmetry restoration
- 6.6. Running couplings
- 6.7. Fermions
- 6.8. Equilibration in field theories.