Studies in theoretical physics. Volume 1, Fundamental mathematical methods /
Studies in Theoretical Physics, Volume 1: Fundamental mathematical methods is the first of the six-volume series in theoretical physics. It provides the mathematical methods that any physical sciences and engineering undergraduate might need in upper-division courses in classical mechanics, quantum...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2022]
|
Colección: | IOP (Series). Release 22.
IOP ebooks. 2022 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Series and convergence
- 1.1. Sequence and series
- 1.2. Testing series for convergence
- 1.3. Series representations of real functions
- 1.4. Sequence, series and Mathematica
- 1.5. Homework assignment
- 2. Complex numbers, functions, and series
- 2.1. Complex numbers
- 2.2. Complex infinite series
- 2.3. Powers and roots of complex numbers
- 2.4. Algebraic versus transcendental functions
- 2.5. Complex numbers, functions and Mathematica
- 2.6. Homework assignment
- 3. Vectors
- 3.1. Vector fundamentals
- 3.2. Vector addition
- 3.3. Vector multiplication
- 3.4. Vectors and equations of a line and a plane
- 3.5. Vectors and Mathematica
- 3.6. Homework assignment
- 4. Matrices and determinants
- 4.1. Important terminologies
- 4.2. Matrix arithmetic and manipulation
- 4.3. Matrix representation of a set of linear equations
- 4.4. Solving a set of linear equations using matrices
- 4.5. Determinant of a square matrix
- 4.6. Cramer's rule
- 4.7. The adjoint and inverse of a matrix
- 4.8. Orthogonal matrices and the rotation matrix
- 4.9. Linear dependence and independence
- 4.10. Gram-Schmidt orthogonalization
- 4.11. Matrices and Mathematica
- 4.12. Homework assignment
- 5. Introduction to differential calculus I
- 5.1. Partial differentiation
- 5.2. Total differential
- 5.3. The multivariable form of the chain rule
- 5.4. Extremum (max/min) problems
- 5.5. The method of Lagrangian multipliers
- 5.6. Change of variables
- 5.7. Partial differentiation and Mathematica
- 5.8. Homework assignments
- 6. Introduction to differential calculus II
- 6.1. First-order ordinary DE
- 6.2. The first-order ODE and exact total differential
- 6.3. First-order ODE and non-exact total differential
- 6.4. Higher-order ODE
- 6.5. The particular solution and the method of superposition
- 6.6. The method of successive integration
- 6.7. Introduction to partial differential equations
- 6.8. Linear differential equations and Mathematica
- 6.9. Homework assignment
- 7. Integral calculus-scalar functions
- 7.1. Integration in Cartesian coordinates
- 7.2. Physical applications
- 7.3. 1-D and 2-D curvilinear coordinates
- 7.4. 3-D curvilinear coordinates : cylindrical
- 7.5. 3-D curvilinear coordinate : spherical
- 7.6. Scalar integrals and Mathematica
- 7.7. Homework assignment
- 8. Vector calculus
- 8.1. Review of vector products
- 8.2. Vectors product physical applications
- 8.3. Vectors derivatives
- 8.4. The gradient operator and directional derivative
- 8.5. The divergence, the curl, and the Laplacian
- 8.6. Line vector integrals
- 8.7. Conservative vectors and exact differentials
- 8.8. Double integral and Green's theorem
- 8.9. The Stokes' theorem
- 8.10. The divergence theorem
- 8.11. Vector calculus and Mathematica
- 8.12. Homework assignment
- 9. Introduction to the calculus of variations
- 9.1. Stationary points and geodesic
- 9.2. The general problem of the calculus of variations
- 9.3. The Brachistochrone problem
- 9.4. The Euler-Lagrange equation in classical mechanics
- 9.5. The calculus of variations and Mathematica
- 9.6. Homework assignment
- 10. Introduction to the eigenvalue problem
- 10.1. Eigenvalue problem in physics
- 10.2. Matrix review
- 10.3. Orthogonal transformations and Dirac's notation
- 10.4. Eigenvalues and eigenvectors
- 10.5. Eigenvalue equation and Hermitian matrices
- 10.6. The similarity transformation
- 10.7. Eigenvalue equation and Mathematica
- 10.8. Homework assignment
- 11. Special functions
- 11.1. The factorial, the gamma function, and Stirling's formula
- 11.2. The beta function
- 11.3. The error function
- 11.4. Elliptic integrals
- 11.5. The Dirac delta function
- 11.6. Mathematica and special functions
- 11.7. Homework assignments
- 12. Power series and differential equations
- 12.1. Power series substitution
- 12.2. Orthonormal set of vectors and functions
- 12.3. Complete set of functions
- 12.4. The Legendre differential equation
- 12.5. The Legendre polynomials
- 12.6. The generating function for the Legendre polynomials
- 12.7. Legendre series
- 12.8. The associated Legendre differential equation
- 12.9. Spherical harmonics and the addition theorem
- 12.10. The method of Frobenius and the Bessel equation
- 12.11. The orthogonality of the Bessel functions
- 12.12. Fuch's theorem
- 12.13. Mathematica and serious substitution method
- 12.14. Homework assignments
- 13. Partial differential equation
- 13.1. PDE in physics
- 13.2. Laplace's equation in Cartesian coordinates
- 13.3. Laplace's equation in spherical coordinates
- 13.4. Laplace's equation in cylindrical coordinates
- 13.5. Poisson's equation
- 13.6. Homework assignment
- 14. Functions of complex variables
- 14.1. Review of complex numbers
- 14.2. Analytic functions
- 14.3. Essential terminologies
- 14.4. Contour integration and Cauchy's theorem
- 14.5. Cauchy's integral formula
- 14.6. Laurent's theorem
- 14.7. The residue theorem
- 14.8. Methods of finding residues
- 14.9. Applications of the residue theorem
- 14.10. The modified residue theorem
- 14.11. Mathematica and complex functions
- 14.12. Homework assignment
- 15. Laplace transform
- 15.1. Integral transform
- 15.2. The Laplace transform
- 15.3. Inverse Laplace transform
- 15.4. Applications of Laplace transforms
- 15.5. Mathematica and Laplace transform
- 15.6. Homework assignment
- 16. Fourier series and transform
- 16.1. Average and root-mean-square values
- 16.2. The Fourier series
- 16.3. Dirichlet conditions
- 16.4. Fourier series with spatial and temporal arguments
- 16.5. The Fourier transform and inverse transform
- 16.6. The Dirac delta function and the Fourier inverse transform
- 16.7. Applications of the Fourier transform
- 16.8. Fourier transform and convolution
- 16.9. Mathematica, Fourier series, transform, and inverse transform.