Cargando…

Condensed matter physics : a modern perspective /

This book connects modern experimental discoveries with theoretical and fundamental concepts. It introduces the interacting and non-interacting aspects of fermionic systems and the role of topology and symmetry in understanding material properties.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Basu, Saurabh (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]
Colección:IOP (Series). Release 22.
IOP ebooks. 2022 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Electron liquid
  • 1.1. Introduction
  • 1.2. Jellium model
  • 1.3. Properties of the electron liquid
  • 1.4. Determination of the Fermi surface : the de Haas-Van Alphen effect
  • 1.5. Fermi liquid theory
  • 1.6. Summary and outlook
  • 2. Magnetic phenomena in solids
  • 2.1. Introduction
  • 2.2. Magnetic ordering : diamagnetism and paramagnetism
  • 2.3. Magnetic properties of filled and partially filled shell materials
  • 2.4. Ferromagnetism and antiferromagnetism
  • 2.5. Mean field theory
  • 2.6. Linear spin wave theory
  • 2.7. Ising model of ferromagnetism : transfer matrix
  • 2.8. Critical exponent and the universality class
  • 2.9. Quantum antiferromagnet
  • 2.10. Itinerant electron magnetism
  • 2.11. Magnetic susceptibility : Kubo formula
  • 2.12. Hubbard model : an introduction
  • 2.13. Symmetries of the Hubbard model
  • 2.14. Ferromagnetism in Hubbard model : Stoner criterion
  • 2.15. Antiferromagnetism in the Hubbard model
  • 2.16. Appendix
  • 2.17. RS coupling
  • 2.18. jj Coupling
  • 2.19. Hund's rule
  • 3. Transport in electronic systems
  • 3.1. Introduction
  • 3.2. Quantum Hall effect
  • 3.3. Kubo formula and the Hall conductivity
  • 3.4. Quantum Hall effect in graphene
  • 4. Symmetry and topology
  • 4.1. Introduction
  • 4.2. Symmetries and topology
  • 4.3. SSH model
  • 4.4. The SSH Hamiltonian
  • 4.5. Topology in 2D : graphene as a topological insulator
  • 4.6. Quantum spin Hall insulator
  • 4.7. Bulk-boundary correspondence
  • 4.8. Spin Hall conductivity
  • 4.9. Spin Hall effect
  • 5. Green's functions
  • 5.1. Introduction
  • 5.2. Second quantization
  • 5.3. Green's function
  • 5.4. Retarded and advanced Green's functions
  • 5.5. Self-energy : Dyson equation
  • 5.6. Finite temperature Green's function
  • 5.7. Summary and outlook
  • 6. Superconductivity
  • 6.1. Introduction
  • 6.2. Magnetic phase diagram of superconductors
  • 6.3. BCS theory
  • 6.4. The variational calculation
  • 6.5. Electromagnetic considerations
  • 6.6. Ginzburg-Landau (GL) theory
  • 6.7. Experimental determination of energy gap
  • 6.8. The pseudogap phase
  • 7. Superfluidity
  • 7.1. Introduction
  • 7.2. Bose-Einstein condensation
  • 7.3. Superfluidity
  • 7.4. Many-body physics with cold atomic systems
  • 7.5. Strongly correlated systems
  • 7.6. Various aspects of ultracold atoms in optical lattices
  • 7.7. Summary and outlook
  • 7.8. Appendix.