Cargando…

Quantum computing : a pathway to quantum logic design /

Quantum computing is an emerging technology with the potential to have a significant impact on science and technology. Recent advances in mathematics, material science and computer engineering are transforming quantum computing from theory into practice. As quantum computing is an entirely different...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Babu, Hafiz M. H., 1966- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2020]
Colección:IOP ebooks. 2020 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • part I. Quantum logic. 1. Quantum logic
  • 1.1. Overview
  • 1.2. Motivations towards quantum computing
  • 1.3. The relationship between reversible and quantum logic
  • 1.4. Quantum computers
  • 1.5. The working principles of quantum computers
  • 1.6. The evolution of quantum computers
  • 1.7. Why pursue quantum computing?
  • 1.8. Summary
  • 2. Basic definitions of quantum logic
  • 2.1. The quantum bit
  • 2.2. The quantum gate
  • 2.3. Garbage outputs
  • 2.4. Constant inputs
  • 2.5. Area
  • 2.6. Power
  • 2.7. Delay
  • 2.8. Depth
  • 2.9. Quantum cost
  • 2.10. Quantum gate calculation complexity
  • 2.11. Summary
  • 3. The quantum bit string comparator
  • 3.1. Characteristics of a comparator
  • 3.2. The magnitude comparator
  • 3.3. The design of a quantum comparator
  • 3.4. Summary
  • 4. The quantum adder and subtractor
  • 4.1. The quantum adder
  • 4.2. The quantum subtractor
  • 4.3. Summary
  • 5. The quantum multiplexer and demultiplexer
  • 5.1. The quantum multiplexer
  • 5.2. The quantum demultiplexer
  • 5.3. Summary
  • 6. Quantum adder circuits
  • 6.1. The carry skip adder
  • 6.2. The quantum comparison circuit
  • 6.3. The quantum
  • 6.4. The design of a quantum carry skip adder
  • 6.5. The quantum BCD adder
  • 6.6. Summary
  • 7. The quantum multiplier-accumulator
  • 7.1. The importance of the quantum multiplier-accumulator
  • 7.2. The multiplication technique
  • 7.3. Reduction of the garbage outputs and ancillary inputs of quantum circuits
  • 7.4. The design of a quantum multiplier circuit
  • 7.5. Summary
  • 8. The quantum divider
  • 8.1. Division algorithms
  • 8.2. The importance of the quantum divider
  • 8.3. The tree-based quantum division technique
  • 8.4. The design of a quantum divider circuit
  • 8.5. Summary
  • 9. The quantum BCD priority encoder
  • 9.1. The properties of an encoder
  • 9.2. The design of a quantum BCD priority encoder circuit
  • 9.3. Summary
  • 10. The quantum decoder
  • 10.1. The characteristics of a decoder
  • 10.2. The design of a quantum decoder
  • 10.3. Summary
  • 11. The quantum square root circuit
  • 11.1. Properties of a square root function
  • 11.2. The design of a quantum square root circuit
  • 11.3. Summary
  • 12. Quantum latches and counter circuits
  • 12.1. Properties of latches
  • 12.2. The design of the quantum latches
  • 12.3. Properties of counter circuits
  • 12.4. The design of the quantum counters
  • 12.5. Summary
  • 13. The quantum controlled ternary barrel shifter
  • 13.1. Ternary quantum gates
  • 13.2. Properties of ternary quantum circuits
  • 13.3. The quantum barrel shifter
  • 13.4. The design of a quantum ternary barrel shifter
  • 13.5. Summary
  • 14. Quantum random access memory
  • 14.1. The quantum n-to-2n decoder
  • 14.2. The quantum memory unit
  • 14.3. The construction procedure of the quantum RAM
  • 14.4. Summary
  • 15. The quantum arithmetic logic unit
  • 15.1. The design of a quantum ALU
  • 15.2. Summary
  • 16. Applications of quantum computing technology
  • 16.1. Optimization
  • 16.2. Machine learning
  • 16.3. Biomedical simulations
  • 16.4. Financial services
  • 16.5. Computational chemistry
  • 16.6. Logistics and scheduling
  • 16.7. Cyber security
  • 16.8. Circuit, software, and system fault simulation
  • 16.9. Weather forecasting
  • 16.10. Summary
  • part II. Quantum fault tolerance. 17. Quantum fault-tolerant circuits
  • 17.1. The need for quantum fault-tolerant circuits
  • 17.2. The fault-tolerant quantum adder
  • 17.3. The fault-tolerant multiplier
  • 17.4. The quantum fault-tolerant integer divider
  • 17.5. Summary
  • part III. Quantum-dot cellular automata. 18. Quantum-dot cellular automata
  • 18.1. Fundamentals of QCA circuits
  • 18.2. The QCA cell
  • 18.3. Information and data propagation
  • 18.4. Basic QCA elements and gates
  • 18.5. The QCA clock
  • 18.6. Summary
  • 19. QCA adder and subtractor
  • 19.1. The Ex-OR gate
  • 19.2. The QCA half-adder and half-subtractor
  • 19.3. The QCA full-adder and full-subtractor
  • 19.4. Summary
  • 20. The QCA multiplier and divider
  • 20.1. The QCA multiplier
  • 20.2. The QCA divider
  • 20.3. Summary
  • 21. QCA asynchronous and synchronous counters
  • 21.1. The asynchronous counter
  • 21.2. The synchronous counter
  • 21.3. Summary
  • 22. The QCA decoder and encoder
  • 22.1. The QCA decoder
  • 22.2. The QCA encoder
  • 22.3. Summary
  • 23. The QCA multiplexer and demultiplexer
  • 23.1. The QCA
  • 23.2. The QCA
  • 23.3. The QCA
  • 23.4. The QCA
  • 23.5. Multiplexing/demultiplexing using QCA
  • 23.6. Summary
  • 24. The QCA RAM, ROM, and processor
  • 24.1. The RAM cell
  • 24.2. The QCA ROM
  • 24.3. The QCA processor
  • 24.4. Summary.