Cargando…

Fiber optic pulse compression : numerical techniques and applications with MATLABª /

This book provides information on various pulse compression techniques in the aspect of theoretical modelling as well as experiment which helps the reader to acquire a knowledge on the basic concepts of pulse compression. It fills a noticeable gap in the field and helps readers understand compressio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Raja, R. Vasantha Jayakantha (Autor), Lidiya, A. Esther (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]
Colección:IOP (Series). Release 22.
IOP series in advances in optics, photonics and optoelectronics.
IOP ebooks. 2022 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction
  • 1.1. Ultrashort pulses
  • 1.2. Characteristics of optical pulses
  • 1.3. Generation of broadband spectra
  • 1.4. Time-bandwidth product
  • 1.5. Applications of ultrashort pulses
  • 1.6. Ultrashort-pulse-generation techniques
  • 1.7. Pulse compression
  • 1.8. Experiments with pulse-compression techniques
  • 1.9. Organization of this book
  • 2. Photonic crystal fiber
  • 2.1. Optical fiber
  • 2.2. Guiding mechanism of optical fiber
  • 2.3. Optical fiber construction
  • 2.4. Modes in optical fiber
  • 2.5. Normalized frequency (V number) of a core
  • 2.6. Transmission window
  • 2.7. Pulse compression in optical fiber
  • 2.8. Photonic crystal fiber
  • 2.9. Fabrication of photonic crystal fiber
  • 2.10. Material selection for PCF modeling
  • 2.11. Advantages
  • 2.12. Pulse compression in PCF
  • 3. Theory and modeling of photonic crystal fiber
  • 3.1. Numerical methods
  • 3.2. The fully vectorial effective index method
  • 3.3. Group velocity dispersion (GVD)
  • 3.4. Mode parameters of PCF
  • 3.5. Linear properties of photonic crystal fiber
  • 3.6. Nonlinear properties of photonic crystal fiber
  • 3.7. Finite-element method
  • 4. Soliton propagation
  • 4.1. Soliton
  • 4.2. Nonlinear propagation in optical fiber
  • 4.3. Split-step Fourier method
  • 4.4. Nonlinear propagation in optical fiber
  • 4.5. Importance of optical solitons
  • 4.6. Why solitons in photonic crystal fiber?
  • 5. Conventional compression schemes
  • 5.1. Mechanism of pulse compression
  • 5.2. Soliton compression
  • 5.3. Quality analysis
  • 5.4. Adiabatic compression
  • 5.5. Pulse-parameter equation
  • 5.6. Projection operator method
  • 6. Self-similar compression
  • 6.1. Review of pulse compression
  • 6.2. Pulse compression through self-similar analysis
  • 7. Pulse compression in nonlinear optical loop mirrors
  • 7.1. Introduction
  • 7.2. Nonlinear optical loop mirrors
  • 7.3. Numerical model of an NOLM
  • 7.4. Applications of NOLMs
  • 7.5. Soliton propagation in NOLMs
  • 7.6. Soliton pulse compression in NOLMs
  • 8. Cascaded compression
  • 8.1. Cascaded compression
  • 8.2. Effect of temperature on chloroform-infiltrated PCF
  • 8.3. Theoretical modeling of cascaded PCF
  • 8.4. Compression through a cascaded PCF
  • 8.5. Quality analysis
  • 9. Supercontinuum compression
  • 9.1. Supercontinuum generation
  • 9.2. Physical mechanisms
  • 9.3. Pulse compression through SCG
  • 9.4. Tunable pulse compression
  • 9.5. Theoretical model.