Cargando…

Polyadic algebraic structures /

The book is devoted to the thorough study of polyadic (higher arity) algebraic structures, which has a long history, starting from 19th century.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dupliæi, Stepan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]
Colección:IOP (Series). Release 22.
IOP ebooks. 2022 collection.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 i 4500
001 IOP_9780750326483
003 IOP
005 20220705101458.0
006 m eo d
007 cr bn |||m|||a
008 220705s2022 enka fob 000 0 eng d
020 |a 9780750326483  |q ebook 
020 |a 9780750326476  |q mobi 
020 |z 9780750326469  |q print 
020 |z 9780750326490  |q myPrint 
024 7 |a 10.1088/978-0-7503-2648-3  |2 doi 
035 |a (CaBNVSL)thg00083288 
035 |a (OCoLC)1336503003 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QA162  |b .D877 2022eb 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512/.02  |2 23 
100 1 |a Dupliæi, Stepan,  |e author. 
245 1 0 |a Polyadic algebraic structures /  |c Steven Duplij. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2022] 
300 |a 1 online resource (various pagings) :  |b illustrations. 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release $release] 
490 1 |a IOP ebooks. [2022 collection] 
500 |a "Version: 20220601"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a part I. One-set polyadic algebraic structures. 1. One-set algebraic structures and Hosszú-Gluskin theorem -- 1.1. General properties of one-set one-operation polyadic structures -- 1.2. Polyadic semigroups, quasigroups and groups -- 1.3. Polyadic direct products and changed arity powers -- 1.4. The deformed Hosszú-Gluskin theorem -- 1.5. Polyadic analog of Grothendieck group 
505 8 |a 2. Representations and heteromorphisms -- 2.1. Homomorphisms of one-set polyadic algebraic structures -- 2.2. Heteromorphisms of one-set polyadic algebraic structures -- 2.3. Hetero-covering of algebraic structures -- 2.4. Multiplace representations of polyadic algebraic structures -- 2.5. k-Place actions 
505 8 |a 3. Polyadic semigroups and higher regularity -- 3.1. Generalized q-regular elements in semigroups -- 3.2. Higher q-inverse semigroups -- 3.3. Higher q-inverse polyadic semigroups -- 3.4. Polyadic-binary correspondence, regular semigroups, braid groups 
505 8 |a 4. Polyadic rings, fields and integer numbers -- 4.1. One-set polyadic 'linear' structures -- 4.2. Polyadic direct products of rings and fields -- 4.3. Polyadic integer numbers -- 4.4. Finite polyadic rings of integers -- 4.5. Finite polyadic fields of integer numbers -- 4.6. Diophantine equations over polyadic integers and Fermat's theorem 
505 8 |a part II. Two-sets polyadic algebraic structures. 5. Polyadic algebras and deformations -- 5.1. Two-set polyadic structures -- 5.2. Mappings between polyadic vector spaces -- 5.3. Polyadic associative algebras 
505 8 |a 6. Polyadic inner spaces and operators -- 6.1. Polyadic inner pairing spaces and norms -- 6.2. Elements of polyadic operator theory 
505 8 |a 7. Medial deformation of n-ary algebras -- 7.1. Almost commutative graded algebra -- 7.2. Almost medial graded algebras -- 7.3. Medial n-ary algebras -- 7.4. Almost medial n-ary graded algebras -- 7.5. Toyoda's theorem for almost medial algebras 
505 8 |a 8. Membership deformations and obscure n-ary algebras -- 8.1. Graded algebras and Shur factors -- 8.2. Membership function and obscure algebras -- 8.3. Membership deformation of commutativity -- 8.4. Projective representations -- 8.5. n-ary double commutative algebras -- 8.6. Conclusions 
505 8 |a part III. Polyadic quantum groups. 9. Polyadic Hopf algebras -- 9.1. Polyadic coalgebras -- 9.2. Polyadic bialgebras -- 9.3. Polyadic Hopf algebras -- 9.4. Ternary examples -- 9.5. Polyadic almost co-commutativity and co-mediality 
505 8 |a 10. Solutions to higher braid equations -- 10.1. Yang-Baxter operators -- 10.2. Polyadic braid operators and higher braid equations -- 10.3. Solutions to the ternary braid equations 
505 8 |a part IV. Polyadic categories. 11. Polyadic tensor categories -- 11.1. Binary tensor categories -- 11.2. Polyadic tensor categories -- 11.3. Polyadic units, unitors and quertors -- 11.4. Braided tensor categories -- 11.5. Medialed polyadic tensor categories -- 11.6. Conclusions. 
520 3 |a The book is devoted to the thorough study of polyadic (higher arity) algebraic structures, which has a long history, starting from 19th century. 
521 |a Computational physics, theoretical physics, mathematicians. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Steven Duplij (Stepan Douplii) is a theoretical and mathematical physicist from the University of Münster, Germany. Dr. Duplij is the editor-compiler of 'Concise Encyclopaedia of Supersymmetry' (2005, Springer), and is the author of more than a hundred scientific publications and several books. His scientific directions include supersymmetry and quantum groups, advanced algebraic structures, gravity and nonlinear electrodynamics, constrained systems and quantum computing. 
588 0 |a Title from PDF title page (viewed on July 5, 2022). 
650 0 |a Algebra, Abstract. 
650 0 |a Polyadic algebras. 
650 7 |a Optimization.  |2 bicssc 
650 7 |a Mathematics and computation.  |2 bisacsh 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750326469  |z 9780750326490 
830 0 |a IOP (Series).  |p Release 22. 
830 0 |a IOP ebooks.  |p 2022 collection. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-2648-3  |z Texto completo