Cargando…

Optical radiation and matter /

Optical Radiation and Matter provides a deeper look at electricity and magnetism and the interaction of optical radiation with molecules and solid materials. The focus is on developing an understanding of the sources of light, how light moves through matter, and how external electric and magnetic fi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Brecha, Robert J. (Autor), O'Hare, J. Michael (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2021]
Colección:IOP (Series). Release 21.
IOP ebooks. 2021 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Review of electromagnetic radiation
  • 1.1. Historical introduction
  • 1.2. Maxwell's equations in free space
  • 1.3. The free-space wave equation
  • 1.4. Phase and group velocity
  • 1.5. Energy flux
  • 1.6. Resonator electric field
  • 1.7. Problems
  • 2. Polarization of light
  • 2.1. Historical introduction
  • 2.2. Polarization of light waves
  • 2.3. Jones vector representation of polarization states
  • 2.4. Optical elements and Jones matrices
  • 2.5. Longitudinal field components
  • 2.6. Problems
  • 3. Radiation and scattering
  • 3.1. Historical introduction
  • 3.2. Summary of Maxwell's equations
  • 3.3. Potential theory and the radiating EM field
  • 3.4. Radiation from a dipole
  • 3.5. Scattering
  • 3.6. Polarization of Rayleigh scattered light
  • 3.7. Radiation in the Coulomb gauge
  • 3.8. Problems
  • 4. Absorption and line broadening
  • 4.1. Historical introduction
  • 4.2. Extinction by a dipole
  • 4.3. Field from a sheet of dipoles
  • 4.4. Propagation in a dilute medium
  • 4.5. Beer's law
  • 4.6. Broadening
  • 4.7. Absorption spectroscopy experiment
  • 4.8. Problems
  • 5. Macroscopic electrodynamics
  • 5.1. Historical introduction
  • 5.2. The local field
  • 5.3. The macroscopic Maxwell equations
  • 5.4. The polarization density and constitutive relation
  • 5.5. Dielectric and impermeability tensors
  • 5.6. The electromagnetic wave equation
  • 5.7. Plane waves in dense matter
  • 5.8. Classification of wave types
  • 5.9. Reflection and transmission at an interface
  • 5.10. Thin-film anti-reflection (AR) coating
  • 5.11. Waves at a conducting interface
  • 5.12. Problems
  • 6. Optical properties of simple systems
  • 6.1. Normal modes of motion
  • 6.2. Local and collective modes
  • 6.3. Optical properties of simple classical systems
  • 6.4. Drude theory of metals
  • 6.5. Semiconductors--the example of InSb
  • 6.6. Kramers-Kronig relations
  • 6.7. Problems
  • 7. Crystal optics
  • 7.1. Historical introduction
  • 7.2. Polarizers
  • 7.3. Birefringence (double refraction)
  • 7.4. Retarders
  • 7.5. Optical activity
  • 7.6. Faraday effect
  • 7.7. The k-vector surface of quartz
  • 7.8. Off-axis waveplates
  • 7.9. Problems
  • 8. Electro-optic effects
  • 8.1. Historical introduction
  • 8.2. Optical indicatrix revisited
  • 8.3. Electro-optic effects
  • 8.4. Electro-optic retardation
  • 8.5. Electro-optic amplitude modulation
  • 8.6. Electro-optic phase modulation
  • 8.7. The quadratic electro-optic effect
  • 8.8. A microscopic model for electro-optic effects
  • 8.9. High-frequency modulation
  • 8.10. FM spectroscopy
  • 8.11. Problems
  • 9. Acousto-optic effects
  • 9.1. Historical introduction
  • 9.2. Interaction of light with acoustic waves
  • 9.3. Elastic strain
  • 9.4. The photoelastic effect
  • 9.5. Diffraction of light by acoustic waves
  • 9.6. Problems.