A course on digital image processing with MATLAB /
Concentrating on the principles and techniques of image processing, this book provides an in-depth presentation of key topics, including many techniques not included in introductory texts. Practical implementation of the various image processing algorithms is an important step in learning the subjec...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2020]
|
Colección: | IOP ebooks. 2020 collection.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction
- 1.1. The scope and importance of digital image processing
- 1.2. Images
- 1.3. Digital images
- 1.4. Processes involved in image processing and recognition
- 1.5. Applications of image processing
- 2. Image enhancement in the spatial domain
- 2.1. Enhancement of contrast
- 2.2. Gray level transformations
- 2.3. Bit plane slicing
- 2.4. Histogram processing
- 2.5. Filtering in the spatial domain
- 2.6. Sharpening in the spatial domain
- 3. Filtering in the Fourier domain
- 3.1. From the Fourier series to the Fourier transform
- 3.2. Meaning of the Fourier transform
- 3.3. The impulse function
- 3.4. Fourier transform of a train of impulses
- 3.5. The convolution theorem
- 3.6. The discrete Fourier transform (DFT)
- 3.7. Additional properties of the DFT
- 3.8. Filtering in the Fourier domain
- 3.9. Low-pass filters
- 3.10. Other low-pass filters
- 3.11. High-pass filters
- 3.12. The FFT
- 3.13. Comparison of the FFT with convolution
- 4. Image compression
- 4.1. Basics of image compression
- 4.2. Basics of coding theory
- 4.3. Uniquely decodable codes (UDCs), instantaneously decodable codes (IDCs), and all that
- 4.4. Kraft's inequality
- 4.5. Efficiency of instantaneous codes
- 4.6. Information theory
- 4.7. Huffman coding : algorithm
- 4.8. Huffman coding : implementation
- 4.9. Nearly optimal codes
- 4.10. Reducing interpixel redundancy : run-length coding
- 4.11. LZW coding
- 4.12. Arithmetic coding
- 4.13. Transform coding
- 5. Image analysis and object recognition
- 5.1. Image analysis
- 5.2. Detection of points and lines
- 5.3. The Hough transform
- 5.4. Segmentation : edge detection
- 5.5. Thresholding
- 5.6. A global view of image analysis and pattern recognition
- 5.7. Representation of objects
- 5.8. Texture
- 5.9. Skeletonization or medial axis transformation (MAT)
- 5.10. Principal component analysis (PCA)
- 5.11. Pattern recognition
- 6. Image restoration
- 6.1. Analyzing motion blur
- 6.2. Inverse filtering
- 6.3. Noise
- 6.4. Removal of noise by morphological operations
- 6.5. Alternative method for extracting and labeling connected components
- 6.6. Image reconstruction from projections
- 7. Wavelets
- 7.1. Wavelets versus the Fourier transform
- 7.2. The Haar wavelet transform
- 7.3. An alternative view of wavelets
- 8. Color image processing
- 8.1. The RGB color model
- 8.2. The CMY and CMYK color models
- 8.3. The hue, saturation, and intensity (HSI) color model
- 9. Introduction to MATLAB
- 9.1. Introduction
- 9.2. Help with MATLAB
- 9.3. Variables
- 9.4. Mathematical operations
- 9.5. Loops and control statements
- 9.6. Built-in MATLAB functions
- 9.7. Some more useful MATLAB commands and programming practices
- 9.8. Functions
- 10. The image processing toolbox
- 10.1. Introduction
- 10.2. Reading from an image file and writing to an image file
- 10.3. Fourier domain processing
- 10.4. Calculation of entropy
- 10.5. Huffman code
- 10.6. Arithmetic code
- 10.7. Segmentation
- 10.8. Hough transform
- 10.9. Some common error messages in MATLAB
- 11. Video processing
- 11.1. Introduction
- 11.2. Extracting frames from a video
- 11.3. Video compression
- 11.4. Detection and analysis of motion : optical flows
- 12. Solutions to selected exercises.